首页> 外文学位 >Dynamics of epistasis from duplicate genes to genome-wide networks.
【24h】

Dynamics of epistasis from duplicate genes to genome-wide networks.

机译:从重复基因到全基因组网络的上位性动力学。

获取原文
获取原文并翻译 | 示例

摘要

Epistasis refers to the phenomenon that phenotypic consequences caused by mutation of one gene depend on one or more mutations at another gene. Epistasis is critical for understanding many genetic and evolutionary processes, including pathway organization, evolution of sexual reproduction, mutational load, ploidy, genomic complexity, speciation and the origin of life. However, the epistatic dynamics in biological systems under various internal and external perturbations are largely unknown. In this study, I firstly focused on exploring dynamics of epistasis between duplicate genes. I then investigated the properties of global epistatic networks under different traits. Finally I examined the dynamic changes of epistatic relations among genes under genetic and environmental perturbations.;I started my research by investigating the transcriptional dynamics of duplicate genes with negative epistasis under external perturbations. We found an interesting design principle that two epistatically interacting duplicate genes can acquire a fitness advantage under fluctuating environmental perturbations by achieving maximum expression levels asynchronously. Soon after finishing this project, instead of focusing on epistatic relations between duplicate genes, we analyzed a high-throughput experimental dataset investigating epistatic interactions among ∼4,000 genes in baker's yeast, Saccharomyces cerevisiae. We showed that epistasis is prevalent (∼13% increase from the random expectations) and displays modular architecture among genes that underlie the same growth traits. More interestingly, our results indicate that hub genes responsible for the same growth traits tend to link epistatically with each other more frequently than random expectation.;When conducting these projects, we realized that few studies have examined the genome-wide dynamics of epistatic relations under different genetic and environmental perturbations, which might be due to limitations in screening epistatic relations for multiple mutants of the same genes or multiple environmental conditions under the current high-throughput experimental platforms. We addressed this issue theoretically by using Flux Balance Analysis (FBA), which involves the optimization of cellular objective functions and allows prediction of in silico flux values and/or growth. A series of unique properties of epistatic dynamics under various genetic and environmental perturbations have been revealed in our FBA simulations, and some of them are highly consistent with previous experimental studies.
机译:上位性是指一种基因突变引起的表型后果取决于另一种基因的一个或多个突变的现象。上位性对于理解许多遗传和进化过程至关重要,包括途径组织,有性生殖进化,突变负荷,倍性,基因组复杂性,物种形成和生命起源。但是,在各种内部和外部扰动下生物系统中的上位动力学是未知的。在这项研究中,我首先专注于探索重复基因之间的上位性动力学。然后,我研究了不同特征下的全球上位网络的性质。最后,我研究了遗传和环境扰动下基因间上位关系的动态变化。我通过研究外部扰动下具有负上位性的重复基因的转录动力学来开始我的研究。我们发现了一个有趣的设计原理,即两个上位相互作用的重复基因可以通过异步实现最大表达水平,在波动的环境扰动下获得适应性优势。在完成该项目后不久,我们不再关注重复基因之间的上位性关系,而是分析了一个高通量实验数据集,该数据集研究了面包酵母,酿酒酵母中约4,000个基因之间的上位性相互作用。我们表明,上位性很普遍(比随机预期高出约13%),并且在具有相同生长特性的基因之间显示出模块化的结构。更有趣的是,我们的研究结果表明,负责相同生长特性的集线器基因之间的上位性联系往往比随机预期更频繁。不同的遗传和环境扰动,这可能是由于在当前的高通量实验平台上筛选相同基因的多个突变体或多种环境条件的上位性关系方面的限制。我们通过使用助焊剂平衡分析(FBA)从理论上解决了这个问题,它涉及优化细胞目标函数并允许预测计算机通量值和/或增长。在我们的FBA模拟中,揭示了在各种遗传和环境扰动下上位动力学的一系列独特属性,其中一些与以前的实验研究高度一致。

著录项

  • 作者

    Xu, Lin.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Biology Genetics.;Biology Bioinformatics.;Biology Evolution and Development.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号