首页> 外文学位 >Model-based control and analysis of anthropomorphic walking.
【24h】

Model-based control and analysis of anthropomorphic walking.

机译:基于模型的拟人行走控制和分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation proposes advanced feedback controllers that allow bipedal robots to perform anthropomorphic walking. The motion is confined to the sagittal plane and the robots possess at least two identical legs and a torso. Walking is composed of alternating single support and double support phases.; A model of a planar, underactuated robot with point feet is extended in two ways to include two facets of walking with feet. An impulsive actuator is attached to the end of each leg to approximate the push-off observed in human walking just before double support is initiated and an additional link is attached to the end of the leg via a revolute joint with actuation to model a foot plus ankle during the single support phase.; The robot with the impulsive actuator at each leg is modeled as an underactuated bipedal robot whose dynamics is governed by a set of Lagrangian differential equations during the single support phase. The double support phase is composed of two instantaneous subphases and described by an algebraic map. Key to the control-law design is the creation of a two-dimensional surface that is invariant under the Lagrangian dynamics and the combined impulsive forces from impact with the ground and the impulsive actuation. Simulation is conducted to show that the model with the impulsive action is more energy efficient than the robot without impulsive actuation.; The robot model with the impulsive actuator is applied to study walking during load carrying, with the objective of partially explaining the extraordinary energy efficiency of women of the Luo and Kikyu tribes when carrying loads. A model of load carrying in the Luo style shows that the walking efficiency observed in these women is nearly energy optimal. Two models of walking with loads is proposed for an untrained group of walkers, and the results are compared to energy-optimal walking. It is found that with a light load, reducing energy consumption at the stance knee leads to a more energy efficient gait whereas reducing energy consumption at the hips is more beneficial when the load is heavy.; The single support phase of a robot with feet and a revolute actuated ankle is composed of two subphases, each represented by sets of differential equations, and an instantaneous double support phase. The single support phase begins with a fully-actuated (flat-footed) phase followed by an underactuated (toe-rolling) phase. A two-dimensional invariant surface is created in each subphase. While the Zero Moment Point (ZMP) is applied to ensure that the stance foot does not rotate over the stance toe during the flat-footed phase, the stability of the robot's gait is proved using the Poincare return map on the invariant surfaces. A corollary of the analysis shows that the oft-used ZMP principle is not sufficient for a stable periodic orbit.
机译:本文提出了一种先进的反馈控制器,该控制器可以使双足机器人进行拟人行走。该运动仅限于矢状平面,并且机器人具有至少两条相同的腿和一个躯干。步行由交替的单支撑和双支撑阶段组成。具有点脚的平面,欠驱动机器人的模型以两种方式扩展,以包括用脚行走的两个方面。脉冲促动器连接到每条腿的末端,以近似于在开始双支撑之前在人类步行中观察到的下垂,另外一条连杆通过旋转关节连接到腿的末端,并通过促动来模拟一只脚在单一支撑阶段的脚踝。在每条腿上都具有脉冲执行器的机器人被建模为欠驱动的双足机器人,其动力学在单个支撑阶段受一组拉格朗日微分方程控制。双支持阶段由两个瞬时子阶段组成,并用代数图描述。控制律设计的关键是创建二维表面,该表面在拉格朗日动力学以及在与地面碰撞和脉冲驱动作用下产生的组合脉冲力的作用下是不变的。仿真表明,具有脉冲作用的模型比没有脉冲作用的机器人具有更高的能源效率。带有脉冲执行器的机器人模型被用于研究负荷过程中的行走,目的是部分解释在负荷时罗氏族和奇久族妇女的非凡能量效率。罗式的负荷模型显示,这些女性的步行效率几乎达到最佳能量状态。针对一组未经训练的步行者,提出了两种带有负荷的步行模型,并将结果与​​能量最优步行进行了比较。已经发现,在轻负荷下,降低站立姿势时的能量消耗会导致更节能的步态,而在重负荷下,降低臀部的能量消耗更为有益。具有脚和旋转致动的脚踝的机器人的单支撑阶段由两个子阶段组成,每个子阶段分别由一组微分方程表示,以及一个瞬时双支撑阶段。单支撑阶段始于完全致动(措手不及)阶段,然后是欠致动(脚趾滚动)阶段。在每个子阶段中都会创建一个二维不变表面。尽管应用了零力矩点(ZMP)来确保在平足阶段站立脚不会在站立脚趾上方旋转,但使用不变表面上的Poincare返回图可以证明机器人步态的稳定性。分析的推论表明,经常使用的ZMP原理不足以实现稳定的周期性轨道。

著录项

  • 作者

    Choi, Jun Ho.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号