首页> 外文学位 >Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants.
【24h】

Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants.

机译:用于骨科植入物的二氧化钛纳米管的结构和表面特性表征。

获取原文
获取原文并翻译 | 示例

摘要

This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures.;To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia -- cell's foot used for locomotion -- anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.
机译:这项研究的重点是利用TiO2纳米管的纳米结构形态对钛植入物的表面结构进行改性,并研究了纳米管与成骨细胞的相互作用,以了解影响细胞生长的参数。表征TiO2纳米管的电,机械和结构特性是为了更好地了解这种纳米级形态结构的特性。为了实现本研究的目的,我将钛及其合金以块状形式进行了转化,批量加工形式,或使用低成本和环境友好的方法将薄膜沉积在另一基板上的二氧化钛纳米管表面。该过程仅需要简单的电解质,低成本电极和直流电源。利用这种可扩展的纳米制造的简单方法,典型的结果是纳米管的直径分别约为100nm,壁厚约为20nm。通过更改制造参数,可以制造独立的纳米管,并在它们之间形成开放空间。这种形式的钛被称为一维的,因为电子传输沿纳米管的长度被狭窄地限制。我的博士学位成就已成功表明,成骨细胞(即骨骼的前体细胞)具有很强的附着在钛纳米管内部和外部的趋势,并利用它们的丝状伪足(用于运动的细胞足)固定钛纳米管。实际上,已经表明该细胞更喜欢找到许多锚定位点。这些位点对于成熟的前几周以及钙化为牢固锚固的骨细胞时的细胞运动至关重要。另外,我已经表明,这种表面比光滑的钛表面具有更高的晶胞密度。我的工作还开发了一种过程,该过程使用聚焦的可控光栅离子束作为纳米手术刀,切去成骨细胞的部分,以探测细胞主体下方的附着。最终,成骨细胞生长更快,再加上更强的细胞表面界面,可以降低成本,缩短康复时间并减少由于植入物松动引起的后续手术。

著录项

  • 作者

    Shokuhfar, Tolou.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号