首页> 外文学位 >Device physics of copper(indium,gallium)selenide(2) thin-film solar cells.
【24h】

Device physics of copper(indium,gallium)selenide(2) thin-film solar cells.

机译:硒化铜(铟,镓)(2)薄膜太阳能电池的器件物理。

获取原文
获取原文并翻译 | 示例

摘要

Thin-film solar cells have the potential to be an important contributor to the global energy demand by the mid-21st-century. Cu(In,Ga)Se 2 (CIGS) solar cells, which have achieved laboratory efficiencies close to 20%, are highly attractive, because their band gap is near the optimal value, their polycrystallinity is not significantly detrimental to their performance, and the broad choice of heterojunction partners available allows additional degrees of freedom for optimizing their performance. Although steady progress has been made for CIGS solar cells, this progress has largely been driven by empirical optimization rather than by in-depth understanding of appropriate physical models. This thesis is intended to fill some of the gaps that exist between state-of-the-art experimental solar cells and their device physics. The level of complexity involved is largely prohibitive to analytical treatment and, hence, numerical approaches are primarily utilized.; The dominant topics for CIGS solar cells covered in this dissertation are (1) variation in the Ga/(Ga+In) stoichiometry ("grading"), (2) the formation of "good" heterojunctions, (3) photoconductive effects in window or buffer materials, (4) the apparently benign or even beneficial presence of grain-boundaries (GBs), including a discussion of charged GBs and the effects of Cu-depletion near GBs. This work establishes a baseline model for CIGS solar cells and, from this starting point, the device physics relating to these questions is discussed and principles are identified that apply to a broad range of devices.; CIGS grading is shown to have only small potential to improve device performance. This conclusion conflicts with earlier studies, and it is shown that the difference arises in the evaluation of the grading benefit, in particular, the proper choice of the reference performance. Band-gap increases toward the front of the device are most likely detrimental, while band-gap increases toward the back can be modestly beneficial. The popular "double grading" approach achieves only very small additional gains over the simple back grading approach. Very thin-absorber cells can benefit substantially from back grading, because in this case, grading can mitigate detrimental back-contact surface recombination.; The window/absorber interface is studied and, in good agreement with experiments, a limitation of the open-circuit voltage is observed for wide-band-gap CdS/CIGS solar cells. (Abstract shortened by UMI.)
机译:薄膜太阳能电池有潜力成为21世纪中叶全球能源需求的重要贡献者。具有接近20%的实验室效率的Cu(In,Ga)Se 2(CIGS)太阳能电池具有很高的吸引力,因为它们的带隙接近最佳值,其多晶度不会显着损害其性能,并且可用的异质结合作伙伴的选择范围很广,从而为优化其性能提供了额外的自由度。尽管CIGS太阳能电池取得了稳步进展,但这种进展很大程度上是由经验优化驱动的,而不是对适当物理模型的深入了解。本论文旨在填补目前最先进的实验太阳能电池及其器件物理之间的空白。所涉及的复杂程度在很大程度上禁止分析处理,因此,主要采用了数值方法。本文研究的CIGS太阳能电池的主要主题是(1)Ga /(Ga + In)化学计量比的变化(“渐变”),(2)“良好”异质结的形成,(3)窗口中的光电导效应(4)晶界(GB)的明显良性甚至有益存在,包括对带电GB的讨论以及接近GB的Cu耗尽的影响。这项工作为CIGS太阳能电池建立了基线模型,并且从这个起点出发,讨论了与这些问题有关的设备物理,并确定了适用于各种设备的原理。 CIGS分级显示出改善设备性能的潜力很小。这个结论与早期的研究相矛盾,并且表明在评估等级收益,特别是正确选择参考绩效方面存在差异。朝向设备前部的带隙增加很可能是有害的,而朝向设备后部的带隙增加可能是适度的好处。与简单的反向分级方法相比,流行的“双重分级”方法仅获得很小的额外收益。极薄的吸收性电池可从反分级中受益,因为在这种情况下,分级可减轻有害的背面接触表面的重组。研究了窗口/吸收器界面,并与实验良好吻合,发现宽带隙CdS / CIGS太阳能电池的开路电压受到限制。 (摘要由UMI缩短。)

著录项

  • 作者

    Gloeckler, Markus.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Physics Condensed Matter.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号