首页> 外文学位 >All solid-state-ion-selective electrodes for real-time measurement of relevant physiological phenomena.
【24h】

All solid-state-ion-selective electrodes for real-time measurement of relevant physiological phenomena.

机译:用于实时测量相关生理现象的所有固态离子选择电极。

获取原文
获取原文并翻译 | 示例

摘要

Effectively and accurately measuring physiological phenomena in a real-time manner with high fidelity is important for understanding analyte and ion movement on the molecular level. A popular method for interrogating a target analyte is employing the use of ion-selective electrodes (ISE). ISE are a great analytical tool that allows the user to selectively monitor a particular ion or analyte of interest. Liquid-membrane based ISE were among the very first class of ISE to be extensively studied and used. Although these types of ISE possess many favorable properties, several limitations exist. Among these are longevity of the sensor and an inability to easily miniaturize. Leaching of ion-selective membrane (ISM) components, along with poorly defined charge transfer at the electrode interface are among two of the biggest issues plaguing sensor longevity. With the advent of polymer based ISM in conjunction with using highly electroactive conducting polymers (CP), this has given birth to all solid-state ion-selective electrodes (ASSISE). ASSISE are marked by efficient ion to electron transduction as well as having a mechanically rigid ISM that adheres well to the sensor's surface. Coupled with advances in materials science and batch microfabrication processes, miniaturization of ASSISE has become increasingly feasible and cost effective. The work here focuses on an ASSISE called the multi-analyte biochip (MAB). The MAB was employed to monitor photosynthetic activity in the singe-cell green algal Chlorella vulgaris using a bicarbonate/carbonate ion-selective electrode (B/CISE) and hydrogen ion-selective electrode (HISE). The MAB is capable of making a simultaneous multiplexed measurement, thus greatly increasing temporal and spatial resolution. The MAB is a promising analytical tool due to its ease of use and ability to retain its electrochemical integrity after prolonged storage in liquid media. With an increased focus on spaceflight research, the groundwork preformed with C.vulgaris could potentially be taken into a micro-gravity environment to study the effect of reduced gravity on fundamental biological processes. Although the MAB was used to monitor photosynthesis in this work, its versatility enables it to be applied to a wide variety of biomedical, agricultural and environmental research based applications.
机译:以高保真度实时有效,准确地测量生理现象对于了解分子水平上的分析物和离子运动非常重要。询问目标分析物的一种流行方法是采用离子选择电极(ISE)。 ISE是一款出色的分析工具,可让用户选择性地监控特定的离子或目标分析物。基于液膜的ISE是被广泛研究和使用的ISE的第一类。尽管这些类型的ISE具有许多有利的特性,但存在一些限制。其中包括传感器的寿命和不能轻易地小型化。离子选择性膜(ISM)组分的浸出以及电极界面处电荷转移的定义不明确是困扰传感器寿命的两个最大问题之一。随着基于聚合物的ISM的出现以及使用高电活性导电聚合物(CP)的出现,这催生了所有固态离子选择电极(ASSISE)。 ASSISE的特点是离子到电子的有效传导以及具有机械刚性的ISM,可以很好地粘附到传感器表面。结合材料科学和批量微制造工艺的进步,ASSISE的小型化已变得越来越可行和具有成本效益。这里的工作集中于一种称为多分析物生物芯片(MAB)的ASSISE。使用碳酸氢根/碳酸根离子选择性电极(B / CISE)和氢离子选择性电极(HISE),将MAB用于监测单细胞绿色藻类小球藻中的光合作用活性。 MAB能够同时进行多路复用测量,从而大大提高了时间和空间分辨率。由于MAB的易用性以及在液体介质中长时间存储后保持其电化学完整性的能力,因此它是一种很有前途的分析工具。随着对航天研究的关注日益增加,用寻常小棒梭菌进行的基础工作有可能被带入微重力环境,以研究重力降低对基本生物过程的影响。尽管MAB在这项工作中用于监测光合作用,但它的多功能性使其可应用于各种基于生物医学,农业和环境研究的应用。

著录项

  • 作者

    Zeitchek, Michael Anthony.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Physiology.;Cellular biology.
  • 学位 M.S.
  • 年度 2013
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号