首页> 外文学位 >Tunable Interfacial Thermal Conductance by Molecular Dynamics.
【24h】

Tunable Interfacial Thermal Conductance by Molecular Dynamics.

机译:通过分子动力学调节界面导热。

获取原文
获取原文并翻译 | 示例

摘要

We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).
机译:我们结合非平衡分子动力学模拟(NEMD),振动模式分析和波包模拟,研究了通过固体之间的界面进行可调传热的机制。我们研究了通过界面的传热如何受到压力,界面模量,接触面积和界面层厚度等因素的影响,并超越了发展基础知识的目标,该基础知识将使人们能够定制界面材料的热性能。我们对两个Lennard-Jones(LJ)晶体之间的外延界面的研究未能阐明压力和界面刚度的作用。界面刚度可以通过两种不同的方法来改变:(i)通过施加压力(由于键的非谐性质而间接施加),从而增加界面刚度,以及(ii)通过改变电极的势阱深度直接改变界面键强度。 LJ潜力。当界面结合强度低时,当通过直接改变LJ电势的电势阱深度参数来提高界面热导率时,可以观察到与压力调节在数量上相似的行为。相反,当界面结合强度高时,导热率几乎与压力无关,甚至随着压力的增加而略微降低。这种降低可以通过两种结晶材料的状态的振动密度之间的重叠变化来解释。通过对由单壁纳米管(SWCNT)之间的范德华结组成的结构进行建模,研究了接触面积的作用。通过NEMD模拟获得了SWCNT之间的界面热导,它是交叉角的函数。在这种情况下,每单位面积的结电导率基本上是恒定的。相比之下,最近的实验研究表明,多壁碳纳米管(MWCNT)之间的界面热导随纳米管直径的增加而增加[1]。为了阐明这种行为,我们研究了一个简化的模型,该模型由两层石墨烯带堆叠之间的界面组成,以模拟多壁纳米管之间的接触。我们的结果与实验一致,表明界面导热率确实随石墨烯层数的增加而增加,这对应于MWCNT中较大的直径和较大的壁数。通过对夹在两个硅平板之间的几层石墨烯进行建模,可以研究界面层厚度的作用。通过波包模拟和弹簧质量模型的理论计算,我们表明,由于相干干涉效应,各个振动模式的传递系数强烈依赖于石墨烯层的频率和数量。相比之下,NEMD模拟中获得的界面热导(代表所有声子的积分)基本上与石墨烯层的数量无关,这与最近的实验一致。此外,当我们直接加热一个原子层的石墨烯时,与散热到硅基板相关的有效界面电导非常小。我们将此归因于与石墨烯内高频和低频声子模之间的热传递相关的电阻。最后,我们还用几张WSe2薄片代替了石墨烯层,并观察到Si / n-WSe2 / Si结构的界面热阻至少随着界面厚度线性增长至少1

著录项

  • 作者

    Shen, Meng.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Materials science.;Nanoscience.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号