首页> 外文学位 >Development of a three-dimensional, three-phase coupled model for simulating hydraulic fracture propagation and long-term recovery in tight gas reservoirs.
【24h】

Development of a three-dimensional, three-phase coupled model for simulating hydraulic fracture propagation and long-term recovery in tight gas reservoirs.

机译:三维三维耦合模型的开发,用于模拟致密气藏中的水力压裂扩展和长期采收。

获取原文
获取原文并翻译 | 示例

摘要

In the past decades, development of tight gas reservoirs has become more important. These low permeability reservoirs need to be stimulated effectively with hydraulic fracturing to produce economically. Stimulation design has improved with better understanding these unconventional reservoirs, advances in modeling and study of flow mechanisms.;Conventional fracture propagation models predict fracture geometry based on fracture fluid mechanics, rock mechanics, petrophysics and empirical/analytical leak-off models. Reservoir flow simulators are then used to evaluate post-fracture well performances. These approaches are called de-coupled modeling. It is a challenge to couple these two processes, particularly when dealing with large amounts of input data. Furthermore decoupled modeling is a time-intensive job that requires a coordinated effort from stimulation and reservoir engineers. This approach may not work in low-permeability reservoirs because the hydraulic fracture propagation is complex, fracture fluid leak-off is pressure/reservoir/fracture dependent and there are changes in in-situ stress and permeability during and after a fracture treatment. It has been recognized that fluid loss can be computed directly by solving the multiphase flow equations in porous media. Such an approach is more general and does not have many of the assumptions in decoupled models. Models based on this approach are called coupled models. Hydraulic fracturing is an integrated process of injection of fracture fluid, fracture propagation, proppant transport, cleanup and multi-phase flow through the reservoir. Available coupled models are not fully integrated as they were developed to simulate just one or two of these steps.;The main objective of this research is to develop an integrated coupled model which is capable of fully simulating reservoir flow, fracture propagation, proppant distribution, flowback, long term gas recovery and resulted stress change through a stationary reservoir/stress grid system. The model uses a three-dimensional, three-phase finite difference reservoir flow simulator coupled with a finite difference geomechanics model where both are applied on the same grid system. The model has been validated with published data in the literature.;Using the developed model, parametric studies have been carried out to quantify important factors affecting fracture and recovery processes such as injection rate, treatment volume, proppant type, flowback rate and flowing bottom hole pressure (FBHP). The model enables us to simulate and compare different scenarios and suggest the optimized hydraulic fracturing design. The new findings lead to better understandings of hydraulic fracturing and well performances in tight gas reservoirs.
机译:在过去的几十年中,致密气藏的开发变得越来越重要。这些低渗透油藏需要通过水力压裂有效地增产才能经济地生产。通过更好地理解这些非常规油藏,模拟和研究流动机理的进展,改进了激励设计。传统的裂缝扩展模型基于裂缝流体力学,岩石力学,岩石物理学和经验/分析泄漏模型来预测裂缝的几何形状。然后使用储层流动模拟器来评估压裂后的井表现。这些方法称为解耦建模。结合这两个过程是一个挑战,特别是在处理大量输入数据时。此外,解耦建模是一项耗时的工作,需要增产和储层工程师的共同努力。这种方法在低渗透油藏中可能行不通,因为水力压裂裂缝扩展很复杂,压裂液的泄漏取决于压力/储层/裂缝,并且在压裂处理期间和之后,地应力和渗透率都有变化。已经认识到,可以通过求解多孔介质中的多相流方程来直接计算流体损失。这种方法更为通用,在去耦模型中没有很多假设。基于这种方法的模型称为耦合模型。水力压裂是注入压裂液,压裂扩展,支撑剂输送,清理和通过油层的多相流的综合过程。可用的耦合模型尚未完全集成,因为它们只能模拟其中一个或两个步骤。本研究的主要目的是开发一个能够完全模拟油藏流动,裂缝扩展,支撑剂分布,通过固定的储层/应力网格系统进行返排,长期采气并导致应力变化。该模型使用三维,三相有限差分油藏流动模拟器,并结合有限差分地质力学模型,将两者应用于同一网格系统。该模型已经用文献中的公开数据进行了验证。;使用已开发的模型,进行了参数研究,以量化影响裂缝和采收过程的重要因素,例如注入速率,处理量,支撑剂类型,返排速率和井底流动速率。压力(FBHP)。该模型使我们能够模拟和比较不同的方案,并提出优化的水力压裂设计。新发现使人们对致密气藏中的水力压裂和油井性能有了更好的了解。

著录项

  • 作者

    Jahromi, Mohamad Zeini.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号