首页> 外文学位 >Improvement in Convective Precipitation and Land Surface Prediction over Complex Terrain.
【24h】

Improvement in Convective Precipitation and Land Surface Prediction over Complex Terrain.

机译:复杂地形对流降水和地表预报的改进。

获取原文
获取原文并翻译 | 示例

摘要

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their impact on convective precipitation by conducting numerical modeling experiments at multiple scales over the North American Monsoon (NAM) region. Specifically, the following scientific questions are addressed: (1) how do land surface conditions evolve during the monsoon season, and what are their main controls?, (2) how do the diurnal cycles of surface energy fluxes vary during the monsoon season for the major ecosystems?, and (3) what are the impacts of surface soil moisture and vegetation condition on convective precipitation?;Hydrologic simulation using the TIN-based Real-time Integrated Basin Simulator (tRIBS) is firstly carried out to examine the seasonal evolution of land surface conditions. Results reveal that the spatial heterogeneity of land surface temperature and soil moisture increases dramatically with the onset of monsoon, which is related to seasonal changes in topographic and vegetation controls. Similar results are found at regional basin scale using the uncoupled WRF-Hydro model. Meanwhile, the diurnal cycles of surface energy fluxes show large variation between the major ecosystems. Differences in both the peak magnitude and peak timing of plant transpiration induce mesoscale heterogeneity in land surface conditions. Lastly, this dissertation examines the upscale effect of land surface heterogeneity on atmospheric condition through fully-coupled WRF-Hydro simulations. A series of process-based experiments were conducted to identify the pathways of soil moisture-rainfall feedback mechanism over the NAM region. While modeling experiments confirm the existence of positive soil moisture/vegetation-rainfall feedback, their exact pathways are slightly different. Interactions between soil moisture, vegetation cover, and rainfall through a series of land surface and atmospheric boundary layer processes highlight the strong land-atmosphere coupling in the NAM region, and have important implications on convective rainfall prediction. Overall, this dissertation advances the study of complex land surface processes over the NAM region, and made important contributions in linking complex hydrologic, ecologic and atmospheric processes through numerical modeling.
机译:在异质山地景观上产生的能量和质量的地表通量是大气过程的基础。但是,由于它们的高度复杂性和缺乏空间观测结果,山区对地表过程和地-气相互作用的了解还不够。本文通过在北美季风(NAM)地区进行多尺度数值模拟实验,研究了地表过程及其对对流降水的影响。具体而言,解决了以下科学问题:(1)季风季节期间地表条件如何演变,其主要控制因素是什么?(2)季风季节期间地表能量通量的昼夜周期如何变化? (3)表层土壤水分和植被状况对对流降水有什么影响?;首先使用基于TIN的实时综合盆地模拟器(tRIBS)进行了水文模拟,以研究水生植物的季节演变。地表条件。结果表明,随着季风的爆发,地表温度和土壤水分的空间异质性急剧增加,这与地形和植被控制的季节变化有关。使用非耦合的WRF-Hydro模型在区域流域尺度上也发现了类似的结果。同时,主要生态系统之间的表面能通量的昼夜周期变化很大。植物蒸腾的峰值幅度和峰值时间的差异会引起陆地表面条件下中尺度异质性。最后,本文通过完全耦合的WRF-Hydro模拟研究了地表非均质性对大气条件的高级影响。进行了一系列基于过程的实验,以确定NAM区域土壤水分-降雨反馈机制的途径。虽然建模实验证实存在正的土壤水分/植被-降雨反馈,但它们的确切路径略有不同。通过一系列地表和大气边界层过程,土壤水分,植被覆盖和降雨之间的相互作用突出了NAM地区的强地耦合,这对对流降雨预报具有重要意义。总体而言,本文为NAM地区复杂的地表过程研究提供了基础,并为通过数值模拟将复杂的水文,生态和大气过程联系在一起做出了重要贡献。

著录项

  • 作者

    Xiang, Tiantian.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Hydrologic sciences.;Atmospheric sciences.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号