首页> 外文学位 >Graphical model based segmentation of massive numbers of irregular small objects in images, with application to axon characterization in histological sections.
【24h】

Graphical model based segmentation of massive numbers of irregular small objects in images, with application to axon characterization in histological sections.

机译:基于图形模型的图像中大量不规则小物体的分割,应用于组织切片中的轴突表征。

获取原文
获取原文并翻译 | 示例

摘要

Segmentation and classification of images into desired components is a fundamental problem in biomedical image processing. In this work we address the particular problem of automated identification and characterization of very large numbers of small objects of interest, where the objects have similar but variable structure, are embedded in a complex cluttered background, and may have low contrast and other imaging aberrations. The motivating application is the analysis of microscopy images of stained histological sections of brain or spinal cord tissue, where quantitative measurements from closely packed axons are useful to elucidate possible physiological mechanisms underlying contrast in diffusion-weighted magnetic resonance (DW-MR) images. Our initial solution to the DW-MR analysis emplyed a pipeline of standard image processing techniques to achieve axon segmentation, applied to spinal cord sections that were first imaged with DW-MR and then sectioned, stained, and subjected to microscopic examination. A statistical analysis was carried out to relate axon number and density estimated from the stained images, to a common measure of diffusion, fractional anisotropy. However, the limitations of this initial pipeline with regard to variability in the images, inability to flexibly incorporate all relevant information, and parameter sensitivity of the pipeline components, led us to develop a model-based approach to this segmentation problem. Our framework employs a probabilistic graphical model that encodes objects based on their color and intensity, the information in their local neighborhood, and the information in their boundaries. At the pixel level, we use a class of undirected graphical models, discriminative random fields (DRFs), to represent the posterior class-conditional probability density functions. Using level set functions of these pixel model probability density maps, we construct graph nodes of homogeneous regions and their corresponding boundaries to represent each object. This allows us to combine, in a principled way, the two types of information available about objects of interest - information in local regions and information in boundaries. In addition, we introduce an overall object label for each pair of candidate region and boundary node. We then construct a graph comprised of separate DRF-based graphical models for axon regions and boundaries, and unify these two models using Bayesian Networks (BNs). In the unified graph, the goal is to find the state of all candidate region, boundary, and overall object nodes, given the region and boundary information and the relationship between region and boundary nodes, by maximizing the joint posterior probability distribution over all hidden nodes in the graph. We present results of candidate axon region and boundary labeling, using separate region and boundary models, and compare them with manually labeled regions and boundaries, respectively. We then show the results of the combined model by performing label inference, i.e. finding labels for all candidate regions, boundaries, and overall object nodes, and compare them with manually labeled data based on the overall model. Our results indicate, in particular, that when the individual models fail, the combined model performance is more robust.
机译:将图像分割和分类为所需成分是生物医学图像处理中的基本问题。在这项工作中,我们解决了自动识别和表征大量小目标物体的特殊问题,这些物体具有相似但可变的结构,嵌入复杂的杂乱背景中,并且可能具有低对比度和其他成像像差。激励性的应用是分析大脑或脊髓组织的染色组织切片的显微镜图像,其中紧密堆积的轴突的定量测量可用于阐明弥散加权磁共振(DW-MR)图像中反差的可能生理机制。我们对DW-MR分析的最初解决方案采用了一系列标准图像处理技术来实现轴突分割,并将其应用于先用DW-MR成像然后进行切片,染色并进行显微镜检查的脊髓切片。进行了统计分析,以将根据染色图像估计的轴突数量和密度与扩散的通用度量(分数各向异性)相关联。但是,此初始管道的局限性在于图像的可变性,无法灵活地合并所有相关信息以及管道组件的参数敏感性,这导致我们针对此分割问题开发了基于模型的方法。我们的框架采用概率图形模型,该模型根据对象的颜色和强度,其本地邻域中的信息以及其边界中的信息对对象进行编码。在像素级别,我们使用一类无向图形模型(区分随机字段(DRF))来表示后验类条件概率密度函数。使用这些像素模型概率密度图的水平集函数,我们构造出均质区域及其对应边界的图形节点来表示每个对象。这使我们能够以原则性的方式将有关感兴趣对象的两种可用信息组合在一起-本地信息和边界信息。此外,我们为每对候选区域和边界节点引入一个整体对象标签。然后,我们构造一个由轴突区域和边界的基于DRF的单独图形模型组成的图形,并使用贝叶斯网络(BNs)统一这两个模型。在统一图中,目标是通过最大化所有隐藏节点上的联合后验概率分布,在给定区域和边界信息以及区域和边界节点之间的关系的情况下,找到所有候选区域,边界和整个对象节点的状态在图中。我们使用单独的区域和边界模型呈现候选轴突区域和边界标记的结果,并将它们分别与手动标记的区域和边界进行比较。然后,我们通过执行标签推断来显示组合模型的结果,即查找所有候选区域,边界和整体对象节点的标签,并将它们与基于整体模型的手动标记数据进行比较。我们的结果特别表明,当单个模型失败时,组合模型的性能会更强健。

著录项

  • 作者

    Golabchi, Fatemeh Noushin.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Electrical engineering.;Medical imaging.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号