首页> 外文学位 >Solar gasification of biomass: design and characterization of a molten salt gasification reactor.
【24h】

Solar gasification of biomass: design and characterization of a molten salt gasification reactor.

机译:生物质的太阳能气化:熔融盐气化反应器的设计和表征。

获取原文
获取原文并翻译 | 示例

摘要

The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
机译:用于生物质气化的熔融盐太阳能原型反应器的设计和实施是太阳能气化工艺发展的重要里程碑。在这项工作中开发的反应器允许在1200 K的盐温度下以3 kWth的功率运行,平均孔径通量为1530个太阳,将研磨的或粉状的干燥生物质原料直接气动注入到盐熔体中。在电加热反应器中进行的实验室规模实验证明了熔融盐的益处,并对数据进行了评估,以确定熔融盐中生物质或碳的热解和气化动力学。在存在熔融盐的情况下,总的气体收率提高了22%。由于改善的传热,热解速率提高了一倍,而碳气化速率提高了一个数量级。现有的纤维素热解动力学模型很好地拟合了数据,而熔融盐中的碳气化遵循动力学模型,动力学模型是2/3阶收缩颗粒模型,其预指数因子为1.5 * 106 min-1,活化能为158 kJ /摩尔基于同心圆柱体的几何形状开发了一种反应堆概念,其中腔体式太阳能接收器浸入一定量的熔融碳酸盐中。传递到空腔的集中辐射在空腔壁中吸收,并通过对流传递到盐量。原料被输送到熔融盐体积中,在其中将进行生物质气化反应以产生所需的产物气体。基于关键物理过程的建模,优化了腔体接收器/反应器概念的功能。根据使用蒙特卡洛射线追踪模型进行的辐射交换参数调查,对腔体吸收器的几何形状进行了优化,从而得到了一种腔体设计,可实现80%-90%的吸收效率。将辐射交换模拟与熔融盐自然对流的CFD模型耦合起来的参数测量用于确定包含熔融盐的环的大小,以最大程度地利用吸收的太阳能,从而产生70%的预计利用率。使用有限元分析来最终确定设计,以达到可接受的小于34.5 MPa的热应力,从而避免材料蠕变。

著录项

  • 作者

    Hathaway, Brandon Jay.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mechanical engineering.;Energy.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号