首页> 外文学位 >Experimental investigation of carbon dioxide trapping due to capillary retention in deep saline aquifers.
【24h】

Experimental investigation of carbon dioxide trapping due to capillary retention in deep saline aquifers.

机译:在深盐水层中由于毛细管滞留而捕集二氧化碳的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Carbon dioxide (CO2) is by far the most significant greenhouse gas released by human activities through fossil fuel combustion. In order to minimize CO2 emissions to the atmosphere, sequestration of CO 2 in underground geological formations has been considered the most promising alternative to control greenhouse effects. In particular, deep saline aquifers are prime candidates for CO2 sequestration due to their large potential storage capacity and common occurrence. CO2 sequestration in deep saline aquifers can be achieved by several trapping mechanisms which are generally categorized as structural, dissolution, mineral and capillary trapping. Capillary trapping is a physical mechanism by which CO2 is naturally immobilized in the pore spaces of aquifer rocks during geologic carbon sequestration operations, and thus a key aspect of estimating geologic storage potential. It is an important, yet poorly understood trapping mechanism, primarily because of the lack of well characterized, laboratory or field data that could lead to a better understanding of the physical mechanism associated with capillary retention of CO2 in geological media.;Here, we studied capillary trapping of supercritical carbon dioxide (scCO 2), and the effect of initial scCO2 saturation and flow rate on the storage/trapping potential of Berea sandstone. We performed two-phase, scCO2-brine displacements in two sequential drainage-imbibition core flood cycles to quantify end saturations of scCO2 with the aid of micro-computed tomography imaging. Drainage I led to an average initial scCO2 saturation of 45% after scCO2 injection, and Imbibition I resulted in an average residual scCO2 saturation of 26% after brine injection. In comparison, Drainage II and Imbibition II were performed at higher flow rates and yielded average initial and residual scCO2 saturations of 61% and 31%, respectively. We also analyzed pore size distribution to estimate primary capillary pressure characteristics of the samples under investigation. Overall, we concluded that the initial scCO2 saturation influences the residual scCO2 saturation to a greater extent than the rate of imbibition and therefore, it is a dominant factor in determining the amount of CO2 that can be geologically stored.;Our study contributes to the research of CO2 capillary trapping in saline aquifers by proposing experimental methods that can mimic deep saline aquifers conditions in the lab, by investigating pore size distribution with high resolution X-ray imaging and, most important, by quantifying the capacity of capillary trapping of CO2 in a brine-CO2-rock system.
机译:二氧化碳(CO2)是迄今为止人类活动通过化石燃料燃烧释放的最重要的温室气体。为了使向大气中的CO2排放量最小化,地下地质构造中的CO 2固存被认为是控制温室效应的最有希望的替代方法。特别是,深层盐水蓄水层因其巨大的潜在储存能力和普遍存在而成为二氧化碳封存的主要候选对象。可以通过几种捕集机制实现深层盐水中的二氧化碳隔离,这些捕集机制通常分为结构捕集,溶解捕集,矿物捕集和毛细管捕集。毛细管捕集是一种物理机制,在地质固碳过程中,二氧化碳自然地固定在含水层的孔隙中,因此是估算地质封存潜力的关键方面。这是一种重要的但尚不为人所知的捕集机制,主要是因为缺乏特征明确的实验室或现场数据,可能导致人们更好地了解与二氧化碳在地质介质中的毛细管滞留有关的物理机制。超临界二氧化碳(scCO 2)的毛细管捕集,以及初始scCO2饱和度和流速对Berea砂岩的储藏/捕集潜力的影响。我们在两个连续的排水-吸入岩心驱替循环中进行了两阶段的scCO2盐水驱替,以借助微型计算机断层摄影成像量化scCO2的末端饱和度。注入scCO2后,排水I导致平均初始scCO2饱和度为45%,而注入I导致注入盐水后的平均残余scCO2饱和度为26%。相比之下,排水II和Imbibition II在较高的流速下进行,平均初始scCO2和残余scCO2饱和度分别为61%和31%。我们还分析了孔径分布,以估计所研究样品的主要毛细管压力特征。总的来说,我们得出的结论是,初始scCO2饱和度对剩余scCO2饱和度的影响远大于吸收速率,因此,它是确定可地质封存的CO2量的主要因素。通过提出可以模拟实验室深层盐水层条件的实验方法,通过高分辨率X射线成像研究孔径分布以及最重要的是通过量化CO2中毛细管捕集二氧化碳的能力,提出了可以模拟实验室深层盐水层条件的实验方法盐水-二氧化碳系统。

著录项

  • 作者

    Li, Xinqian.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号