首页> 外文学位 >Sorption and photochemistry of manufactured carbon nanomaterials in the aquatic environment.
【24h】

Sorption and photochemistry of manufactured carbon nanomaterials in the aquatic environment.

机译:人造碳纳米材料在水环境中的吸附和光化学。

获取原文
获取原文并翻译 | 示例

摘要

With the growing use of carbon-based manufactured nanoparticles, including buckminsterfullerene and single-walled carbon nanotubes (SWNTs), it is likely that they will enter the environment through use, disposal, and spills; however, their environmental fate and subsequent effects on ecosystems have not been extensively studied. One of the key knowledge gaps in understanding their effects on the environment is the lack of quantitative data on their transformations in the natural environment, which is crucial for lifecycle analysis. To this end, this study has examined two potentially important environmental fate processes---sorption the photoreactivity---of these nanomaterials. Although C60 is extremely hydrophobic, molecular C60 does exist in water, and it is through this dissolved concentration or activity that its environmental distribution will be regulated (i.e., thermodynamically controlled), including its self-association to form clusters or nanoparticles. The distribution of C60 between soil and mixtures of ethanol (EOH) and water were measured at ethanol mole fractions ranging from X EOH = 1.0 to 0.4 for two soils. By measuring K p at XEOH = 1.0 for a series of soils that ranged in organic carbon and clay mineral content, possible mineral contribution to the overall partition process was found for some of the soils. After correcting for any mineral contribution to sorption, the organic carbon normalized partition coefficient, Koc, at each value of XEOH was calculated from the measured Kp values. Through a classical thermodynamic relationship, the Koc values determined at XEOH = 1.0 to 0.4 were extrapolated to estimate the pure water (i.e., XEOH = 0) Koc value of 107.1 (L/kg). Accounting for dissolved organic matter (DOM) in any natural water-soil mixtures may lower this estimate by over a factor of 2, placing this estimate in good agreement with C60's octanol-water partition coefficient, Kow ( = 10 6.7). Also, the photoreactivity of single-walled carbon nanotubes (SWNTs) that (i) have been functionalized via acid oxidation to contain carboxylic acid groups, (ii) further functionalized via esterification with polyethylene oxide groups, or (iii) are unmodified (i.e., unfunctionalized) was examined. Aqueous colloidal dispersions of both types of functionalized nanotubes generated reactive oxygen species (ROS) including singlet oxygen (1O 2), superoxide anion (O2·-), and hydroxyl radicals (·OH) in light within the solar spectrum (lambda = 300 to 410 nm) under aerobic conditions. Defects in the fullerene surface caused by functionalization, as well as differences in amorphous carbon and metal impurity content within the different SWNT preparations, may facilitate ROS production. Experiments suggest that the metal impurities may especially contribute to ·OH generation. It appears that the functionalized nanotubes can act as the electron donors directly (resulting in a change in their properties) or can shuttle electrons from other electron donors to form these reactive oxygen species. Addition of NADH as an electron donor to colloidal dispersions of carboxylated SWNTs resulted in O2·- generation in the absence of light, suggesting dark reaction electron transfer as a potential mechanism of toxicity.
机译:随着基于碳的人造纳米颗粒(包括巴克敏斯特富勒烯和单壁碳纳米管(SWNT))的使用不断增加,它们很可能会通过使用,处置和泄漏进入环境。但是,它们的环境命运以及对生态系统的后续影响尚未得到广泛研究。理解其对环境的影响的主要知识差距之一是缺乏有关其在自然环境中的转化的定量数据,这对于生命周期分析至关重要。为此,本研究检查了这些纳米材料的两个潜在的重要环境命运过程-吸收光反应性。尽管C60具有极强的疏水性,但分子C60确实存在于水中,并通过这种溶解的浓度或活性来调节其环境分布(即热力学控制),包括其自缔合形成簇或纳米颗粒。对于两种土壤,在乙醇摩尔分数X EOH = 1.0至0.4的情况下,测量了土壤与乙醇(EOH)和水的混合物之间的C60分布。通过在一系列XEOH = 1.0的土壤中测量K p,这些土壤的有机碳和粘土矿物质含量各不相同,从而发现某些土壤可能对整个分配过程贡献了矿物质。校正任何矿物对吸附的贡献后,根据测得的Kp值计算XEOH的每个值下的有机碳归一化分配系数Koc。通过经典的热力学关系,将在XEOH = 1.0到0.4时确定的Koc值外推,以估算纯水(即XEOH = 0)的Koc值为107.1(L / kg)。考虑到任何天然水-土壤混合物中的溶解有机物(DOM)可使该估算值降低2倍,使该估算值与C60的辛醇-水分配系数Kow(= 10 6.7)高度吻合。而且,单壁碳纳米管(SWNT)的光反应性(i)已通过酸氧化功能化为包含羧酸基团,(ii)通过聚环氧乙烷基团的酯化进一步功能化,或(iii)未改性(即,未功能化)。两种功能化纳米管的胶态分散体在太阳光谱中的光中产生的活性氧(ROS)包括单线态氧(1O 2),超氧阴离子(O2·-)和羟基自由基(·OH)(λ= 300至410 nm)。由官能化引起的富勒烯表面缺陷以及不同SWNT制剂中无定形碳和金属杂质含量的差异可能会促进ROS的产生。实验表明,金属杂质可能特别有助于·OH的生成。看来功能化的纳米管可以直接充当电子给体(导致其性质的改变),或者可以将电子从其他电子给体穿梭而形成这些活性氧。将NADH作为电子供体添加到羧基化SWNTs的胶体分散体中会导致在没有光照的情况下产生O2·-,这表明暗反应电子转移是潜在的毒性机制。

著录项

  • 作者

    Chen, Chia-Ying.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Civil.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号