首页> 外文学位 >Interpreting horizontal well flow profiles and optimizing well performance by downhole temperature and pressure data.
【24h】

Interpreting horizontal well flow profiles and optimizing well performance by downhole temperature and pressure data.

机译:通过井下温度和压力数据解释水平井流动剖面并优化井性能。

获取原文
获取原文并翻译 | 示例

摘要

Horizontal well temperature and pressure distributions can be measured by production logging or downhole permanent sensors, such as fiber optic distributed temperature sensors (DTS). Correct interpretation of temperature and pressure data can be used to obtain downhole flow conditions, which is key information to control and optimize horizontal well production. However, the fluid flow in the reservoir is often multiphase and complex, which makes temperature and pressure interpretation very difficult. In addition, the continuous measurement provides transient temperature behavior which increases the complexity of the problem. To interpret these measured data correctly, a comprehensive model is required.;In this study, an interpretation model is developed to predict flow profile of a horizontal well from downhole temperature and pressure measurement. The model consists of a wellbore model and a reservoir model. The reservoir model can handle transient, multiphase flow and it includes a flow model and a thermal model. The calculation of the reservoir flow model is based on the streamline simulation and the calculation of reservoir thermal model is based on the finite difference method. The reservoir thermal model includes thermal expansion and viscous dissipation heating which can reflect small temperature changes caused by pressure difference. We combine the reservoir model with a horizontal well flow and temperature model as the forward model. Based on this forward model, by making the forward calculated temperature and pressure match the observed data, we can inverse temperature and pressure data to downhole flow rate profiles. Two commonly used inversion methods, Levenberg-Marquardt method and Marcov chain Monte Carlo method, are discussed in the study. Field applications illustrate the feasibility of using this model to interpret the field measured data and assist production optimization.;The reservoir model also reveals the relationship between temperature behavior and reservoir permeability characteristic. The measured temperature information can help us to characterize a reservoir when the reservoir modeling is done only with limited information. The transient temperature information can be used in horizontal well optimization by controlling the flow rate until favorite temperature distribution is achieved. With temperature feedback and inflow control valves (ICVs), we developed a procedure of using DTS data to optimize horizontal well performance. The synthetic examples show that this method is useful at a certain level of temperature resolution and data noise.
机译:水平井温度和压力分布可以通过生产测井或井下永久性传感器(例如光纤分布式温度传感器(DTS))进行测量。可以正确解释温度和压力数据来获得井下流动条件,这是控制和优化水平井产量的关键信息。然而,储层中的流体流动通常是多相且复杂的,这使得温度和压力的解释非常困难。另外,连续测量提供了瞬态温度行为,这增加了问题的复杂性。为了正确解释这些测得的数据,需要一个综合模型。在本研究中,开发了一种解释模型以根据井下温度和压力测量预测水平井的流量剖面。该模型由井眼模型和储层模型组成。储层模型可以处理瞬态多相流,并且包括流模型和热模型。储层流动模型的计算基于流线模拟,储层热模型的计算基于有限差分法。储层热模型包括热膨胀和粘性耗散加热,它们可以反映由压力差引起的微小温度变化。我们将油藏模型与水平井流和温度模型结合起来作为正向模型。基于此正演模型,通过使正演算出的温度和压力与观测数据相匹配,我们可以将温度和压力数据反演为井下流速曲线。研究中讨论了两种常用的反演方法,即Levenberg-Marquardt方法和Marcov链蒙特卡洛方法。现场应用说明了用该模型解释实测数据和辅助生产优化的可行性。储层模型还揭示了温度行为与储层渗透率特征之间的关系。当仅用有限的信息完成储层建模时,测得的温度信息可以帮助我们表征储层。通过控制流量直到获得理想的温度分布,可以将瞬时温度信息用于水平井优化。通过温度反馈和流入控制阀(ICV),我们开发了使用DTS数据优化水平井性能的程序。综合实例表明,该方法在一定水平的温度分辨率和数据噪声下很有用。

著录项

  • 作者

    Li, Zhuoyi.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号