首页> 外文学位 >An investigation of manganese based electrode materials for use in lithium ion batteries.
【24h】

An investigation of manganese based electrode materials for use in lithium ion batteries.

机译:用于锂离子电池的锰基电极材料的研究。

获取原文
获取原文并翻译 | 示例

摘要

Lithium-based batteries are potential candidates to provide maximum volumetric and gravimetric energy density. One of the most attractive candidates as a cathode material for secondary lithium ion battery systems is the spinel LiMn 2O4 because it is environmentally friendly, less expensive and is capable of providing high energy density as compared to other cathode materials that are currently available. One problem associated with the spinel structure is capacity fading during multiple cycles of charge and discharge operations. This behaviour is due in part to the structural distortion during deep charge and discharge where nearly 100% of the lithium is extracted and inserted inside the spinel structure. Capacity fading can also be caused by dissolution of manganese ions in the electrolyte phase.; A solution based method has been adapted for the synthesis of lithium manganese oxide, and chromium and cobalt doped mixed oxide materials using polyvinyl alcohol (PVA) as a chelating agent. It has been found from TGA/DSC analysis that at around 220°C the synthesis reaction is completed. The precursor powders obtained were annealed at different temperatures and times in the range of 250°C to 600°C and from 2 to 8 hours respectively to obtain pure spinel oxides. From X-ray analysis it has been observed that the crystallite size can be controlled in the range of approximately 6 nm to 32 nm depending on the annealing time and the temperature. The morphology of the synthesized materials consisted of submicron sized particles agglomerated with micropores inside the network structure.; To observe the effect of physical properties on battery performance cyclic chronopotentiometric evaluation was conducted. It has been found with these synthesized materials that there is an increase in the 1st discharge capacity with an increase in the annealing time and the temperature at both 1C and C/5 rates. This increase is more significant when the annealing temperature is 600°C as compared to that at 250°C. This implies that an increase in particle size may improve the initial discharge capacity. It was observed that at the discharge rate of 1C, the material annealed at 600°C for 8 hours showed the best performance with respect to an average initial discharge capacity, energy density and capacity retention. However, it was found that the initial discharge capacity, the energy density and the capacity retention are poor for highly crystalline, micron sized lithium manganese oxide cathode material. (Abstract shortened by UMI.)
机译:锂基电池是提供最大体积和重量能量密度的潜在候选者。尖晶石LiMn 2O4是用作二次锂离子电池系统阴极材料的最具吸引力的候选材料,因为与目前可用的其他阴极材料相比,它具有环保性,价格便宜且能够提供高能量密度。与尖晶石结构有关的一个问题是在充电和放电操作的多个循环期间的容量衰减。此行为部分归因于深度充电和放电期间的结构变形,在该变形中,几乎100%的锂被提取并插入到尖晶石结构内部。容量下降也可能是由于锰离子溶解在电解质相中引起的。基于溶液的方法已被改编为使用聚乙烯醇(PVA)作为螯合剂来合成锂锰氧化物以及铬和钴掺杂的混合氧化物材料的方法。从TGA / DSC分析中发现,在约220℃下合成反应完成。将获得的前体粉末分别在250℃至600℃和2至8小时的不同温度和时间下进行退火,以获得纯的尖晶石氧化物。从X射线分析可知,根据退火时间和温度,可以将微晶尺寸控制在约6nm〜32nm的范围内。合成材料的形貌由在网络结构内部附有微孔的亚微米级颗粒组成。为了观察物理性能对电池性能的影响,进行了循环计时电位评估。已经发现,利用这些合成材料,在1C和C / 5速率下,随着退火时间和温度的增加,第一放电容量增加。当退火温度为600°C时,与250°C时相比,这种增加更为明显。这意味着增加粒径可以改善初始放电容量。观察到在1C的放电速率下,在600℃下退火8小时的材料在平均初始放电容量,能量密度和容量保持率方面表现出最佳性能。但是,发现对于高度结晶的微米级锂锰氧化物正极材料,初始放电容量,能量密度和容量保持性较差。 (摘要由UMI缩短。)

著录项

  • 作者

    Sengupta, Surajit.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号