首页> 外文学位 >High pressure scanning tunneling microscopy studies of adsorbate structure and mobility during catalytic reactions. Novel design of an ultra high pressure, high temperature scanning tunneling microscope system for probing catalytic conversions.
【24h】

High pressure scanning tunneling microscopy studies of adsorbate structure and mobility during catalytic reactions. Novel design of an ultra high pressure, high temperature scanning tunneling microscope system for probing catalytic conversions.

机译:催化反应过程中吸附物结构和迁移率的高压扫描隧道显微镜研究。用于探测催化转化的超高压高温扫描隧道显微镜系统的新颖设计。

获取原文
获取原文并翻译 | 示例

摘要

The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (> 30 atm) and temperatures (> 300 °C).; The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 °C, is briefly presented. Extensive vibrational and thermal analysis of the system is presented, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM.; Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4° on Pt(111), and domains of c(4 x 2)-CO+C 2H3, previously unobserved (4 x 2)-CO+3C2H 3, and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen.; In order to observe heterogeneous catalytic reactions that occur well at high pressure and temperature that more closely resemble industrial settings, a custom STM motor has been designed and constructed in-house. The new STM design features a much reduced size and a rigid coupling to the sample, and has been tested to show considerably higher resonance frequency than conventional tripod designs, providing the ability to image faster and yielding smaller susceptibility to noise. A flow reactor cell of much reduced volume for pressures up to 30 atmospheres has also been designed and constructed to house the new STM. The small volume reduces gas consumption and sensitivity to impurities in high pressure gases, as well as maximizes product concentration and reduces response time. (Abstract shortened by UMI.)
机译:其中提出的工作的目的是利用扫描隧道显微镜(STM)的功能在各种环境下实时,原子分辨率地操作,以监测高压下的吸附物结构和迁移率,以及设计一种新的新一代STM系统,可以在更高的压力(> 30 atm)和温度(> 300°C)下进行原位成像。简要介绍了一种高压高温扫描隧道显微镜系统的设计,该系统能够在特高压和最高1 atm和250°C的环境温度下现场监测反应。介绍了系统的广泛振动和热分析,因为该系统作为模板在新超高压,高温STM的设计过程中得以改进。使用这种现有的高压扫描隧道显微镜,我们监测了氢气,乙烯和二氧化碳在mTorr压力范围内与气相平衡的mTorr压力范围内在铂(111)和铑(111)晶面上的共吸附。在不存在CO的情况下乙烯催化加氢成乙烷的过程中,金属表面被吸附剂层覆盖,该吸附剂层在STM成像的时间范围内非常易移动。我们发现,添加一氧化碳会中毒氢化反应,并在单晶表面上诱导有序结构。在将CO加到预先用氢和乙烯覆盖的表面上时观察到几个有序结构:Pt(111)上旋转(√19x√19)R23.4°,且c(4 x 2)-CO +畴C 2H3,先前在Rh(111)上未观察到(4 x 2)-CO + 3C2H 3和(2 x 2)-3CO。提出了一种在金属单晶上使乙烯加氢的CO中毒机理,其中CO阻止了表面金属位点并降低了吸附物的迁移率,从而限制了乙烯与氢的吸附和反应速率。为了观察在高压和高温下很好地发生的,与工业环境更相似的非均相催化反应,公司内部设计并制造了定制的STM电动机。新的STM设计具有大大减小的尺寸和与样品的刚性耦合的特性,并且已经过测试,显示出比传统三脚架设计更高的谐振频率,从而提供了更快的成像能力和更小的噪声敏感性。还设计并制造了一种容积减小的流动反应器,可容纳多达30个大气压,以容纳新的STM。小体积减少了气体消耗,并减少了对高压气体中杂质的敏感性,并最大程度地提高了产品浓度并缩短了响应时间。 (摘要由UMI缩短。)

著录项

  • 作者

    Tang, David Chi-Wai.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

  • 入库时间 2022-08-17 11:42:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号