首页> 外文学位 >Autonomous rendezvous controller design using 3D depth data.
【24h】

Autonomous rendezvous controller design using 3D depth data.

机译:使用3D深度数据的自主会合控制器设计。

获取原文
获取原文并翻译 | 示例

摘要

Space is starting to become a very crowded place especially in low earth orbit (LEO). Current projections are showing that without active debris removal (ADR) missions manned and unmanned operations in LEO will become in danger of collision. While research is being done on removal techniques of debris, most are piloted or sent after only one target. This thesis presents the application of the two controllers to be used on a nonlinear active satellite system to rendezvous with a certain target that can be identified from a depth map acquired from the Microsoft Xbox Kinect. The Kinect is comparable to other Light Detection and Ranging (LiDAR) devices that are currently used in space flight operations. The two types of controllers that are compared are a state feedback controller and a fuzzy logic controller. The fuzzy logic controller was chosen due the way the rules can mimic a pilot's experience, while the state feedback controller is chosen because it creates a controller that is lyapunov stable for each state. Initial conditions are provided to the controller at first in order to ensure each controller works in a variety of start points. Then using image processing algorithms used in flight and in the Open Source Computer Vision Library (OpenCV), we then use the Kinect to identify a target and obtain its distance reading from the depth map. Simulations show that both controllers work well for rendezvous with the target location and showed the benefits of using both controllers.
机译:太空开始变得非常拥挤,尤其是在低地球轨道(LEO)中。当前的预测表明,如果没有积极的碎片清除(ADR)任务,在LEO的有人值守和无人值守行动将有碰撞的危险。虽然目前正在研究清除碎片的技术,但大多数仅在一个目标之后进行试点或发送。本文介绍了这两种控制器在非线性主动卫星系统上的应用,它们可以与从Microsoft Xbox Kinect获取的深度图进行识别的特定目标会合。 Kinect可与当前在太空飞行操作中使用的其他光检测和测距(LiDAR)设备相媲美。比较的两种类型的控制器是状态反馈控制器和模糊逻辑控制器。选择模糊逻辑控制器是因为规则可以模仿飞行员的经验,而选择状态反馈控制器是因为它创建了一个对每个状态都稳定的lyapunov的控制器。首先要为控制器提供初始条件,以确保每个控制器都可以在各种起点上工作。然后,使用飞行中和开放源代码计算机视觉库(OpenCV)中使用的图像处理算法,然后使用Kinect识别目标并从深度图获取其距离读数。仿真表明,两个控制器都可以很好地与目标位置会合,并显示了使用两个控制器的好处。

著录项

  • 作者

    Labrado, Joaquin Daniel.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2013
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号