首页> 外文学位 >Microfabricated devices for the spatial and temporal control of the cellular and tissue microenvironment.
【24h】

Microfabricated devices for the spatial and temporal control of the cellular and tissue microenvironment.

机译:用于细胞和组织微环境的空间和时间控制的微型设备。

获取原文
获取原文并翻译 | 示例

摘要

The cell microenvironment is an integral component of cellular behavior. At a given moment, a cell is bombarded by signals and cues from the environment, which all are processed and integrated into specific behaviors. It is difficult examine how a particular cue affects a cell in its natural environment due to the interference of other signals. Therefore, the ability to control the microenvironment of cells and tissues is necessary to study cell interactions. Towards this end, four different devices were developed to aid in the study of cell and tissue behavior.;Oxygen-sensitive microwells are microfabricated polystyrene circular wells that are embedded with an oxygen responsive dye for the purpose of measuring the oxygen tension of isolated cell clusters. Here, both cell-cell interactions and oxygen levels are controlled or monitored by the device. Oxygen is critical in a number of cell pathways, but is often overlooked in cell culture. The device is a simple and quick method to measure the oxygen levels without disturbing the cells in culture. The microwells parameters such as depth and width are adaptable to specific experimental conditions, and the microwells are compatible with high-magnification modalities such as confocal microscopy.;The second device is a calibration tool for fast-scan cyclic voltammetry (FSCV), a commonly used analytical tool to measure chemical species. The microfluidic flow cell (μFC) is a tool that utilizes microfluidics to improve the electrode calibrations for FSCV. The μFC is simple device that switches between buffer and buffer with a known concentration of the analyte of interest – in this case dopamine - in a Y-channel. The ability to quickly switch solutions yielded electrode calibrations with faster rise times and were more stable at peak current values. The μFC reduced the number of external electrical components previously needed for this calibration and produced linear calibrations over a range of concentrations. For proof of concept, an electrode calibrated with the μFC was used to measure changes in dopamine concentration of a rat undergoing behavioral tasks.;The last two devices stem from a common idea – the ability to precisely control chemical delivery to cells and tissues. The first device automates the delivery of chemicals to gain spatially and temporally control. Having this degree of control is important for a variety of studies from yeast chemotropism to neurotransmitter release. The device consists of six valve-actuated channels that are constructed with vias to allow chemical access to the environment. The program LabVIEW is used to determine the duration, repetition, and delay of chemical release. The device was utilized for the study of yeast chemotropism on agarose and was able to produce a consistent gradient that caused orientation of yeast cells towards the higher concentration end of the gradient.;Lastly, the final device is an expansion of the automated chemical delivery device. Instead of six vias for chemical access, the expanded device has an array of 192. This provides an even higher degree of control and allows for several chemicals to be studied in combination. A multiplexor is utilized to increase the number of vias to 192 while only requiring 24 off chip valves for control. A MATLAB GUI allows each individual via to be independently accessed and chemical delivery be independently controlled.;Although these devices are look different on the surface, they share the common design principles such as laminar flow, spatial definition, and diffusion to exert specific constraints on the cell and tissue environment.
机译:细胞微环境是细胞行为的组成部分。在给定的时刻,一个单元会受到来自环境的信号和提示的轰击,所有这些信号和提示都会被处理并整合为特定的行为。由于其他信号的干扰,很难检查特定提示在自然环境中如何影响细胞。因此,控制细胞和组织的微环境的能力是研究细胞相互作用所必需的。为此,开发了四种不同的设备来帮助研究细胞和组织的行为。氧气敏感的微孔是微细加工的聚苯乙烯圆形孔,其内嵌有一种对氧气敏感的染料,用于测量分离的细胞簇的氧气张力。 。在此,细胞-细胞相互作用和氧水平均由装置控制或监测。氧气在许多细胞途径中都至关重要,但在细胞培养中常常被忽视。该设备是一种简单,快速的方法,可在不干扰培养细胞的情况下测量氧气含量。微孔的参数(例如深度和宽度)可适应特定的实验条件,并且微孔与共焦显微镜等高放大倍数兼容。第二个设备是快速扫描循环伏安法(FSCV)的校准工具使用分析工具来测量化学物质。微流体流通池(μFC)是一种利用微流体改进FSCV电极校准的工具。 μFC是一种简单的设备,可在Y通道中的缓冲液和具有已知浓度的目标分析物(在这种情况下为多巴胺)的缓冲液之间切换。快速切换溶液的能力产生了具有更快上升时间的电极校准,并且在峰值电流值下更稳定。 μFC减少了此校准之前所需的外部电气组件的数量,并在一定浓度范围内产生了线性校准。为了进行概念验证,使用经过μFC校准的电极来测量行为任务大鼠的多巴胺浓度变化。最后两个设备源自一个共同的想法–精确控制化学物质向细胞和组织的输送的能力。第一装置使化学药品的输送自动化,以获得空间和时间上的控制。从酵母趋化性到神经递质释放的各种研究中,具有这种控制程度非常重要。该设备由六个阀驱动通道组成,这些通道带有通孔以允许化学物质进入环境。程序LabVIEW用于确定化学物质释放的持续时间,重复和延迟。该设备用于研究琼脂糖上的酵母趋化性,并能够产生一致的梯度,从而导致酵母细胞朝向梯度的较高浓度端定向。最后,最后的设备是自动化学递送设备的扩展。扩展设备具有192个阵列,而不是六个用于化学品访问的过孔。这提供了更高的控制度,并允许对几种化学品进行组合研究。利用多路复用器将通孔的数量增加到192个,而只需要24个片外阀来进行控制。 MATLAB GUI允许独立访问每个通孔并独立控制化学物质的传递;尽管这些设备在表面上看起来有所不同,但它们具有共同的设计原理,例如层流,空间定义和扩散,以对表面施加特定约束细胞和组织环境。

著录项

  • 作者

    Sinkala, Elly.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Biology Cell.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号