首页> 外文学位 >Molecular Sensing with Protein and Solid-State Nanopores.
【24h】

Molecular Sensing with Protein and Solid-State Nanopores.

机译:蛋白质和固态纳米孔的分子传感。

获取原文
获取原文并翻译 | 示例

摘要

In the past 15 years nanopore sensing has proven to be a successful method for probing a variety of molecules of biological interest, such as DNA, RNA and proteins. Of particular appeal is this technique's ability to probe these molecules without the need for chemical modification or labeling, to do so at physiological conditions, and to probe single molecules at a time, allowing the possibility for results masked in bulk measurements to come to light. In this thesis these advantageous properties will be used in work on both a synthetic (solid-state) nanopore system and an engineered biological nanopore. I will describe the techniques for producing solid-state nanopores in thin membranes of silicon nitride and how these nanopores can be integrated into a fully functioning nanopore sensor system. I will then explore two applications of this system. First, a study of adsorption of bovine serum albumin (BSA), a protein found in blood serum, to the inorganic surface of nitride at the single molecule level. A simple physical model describing the behavior of this protein in the nanopore will be shown. Second, a study of the binding of the nucleocapsid protein of HIV-1 (NCp7) to three aptamers of different affinity, specifically three sequence 20mer mimics of the stem-loop 3 (SL3) RNA—the packaging domain of genomic RNA. Additionally, N-ethylmaleimide, which is known to inhibit the binding of NCp7 to a high-affinity SL3 RNA aptamer, will be used to demonstrate that the inhibition of the binding can be monitored in real time.;Following these applications of the solid-state nanopore system, I will explore the geometry of a newly engineered biological nanopore, FhuA ΔC/Δ4L, by using inert polymers to probe the nanopore interior.
机译:在过去的15年中,纳米孔感测已被证明是探测各种具有生物学意义的分子(例如DNA,RNA和蛋白质)的成功方法。特别吸引人的是,该技术无需化学修饰或标记即可探测这些分子的能力,可以在生理条件下进行,并且一次探测单个分子的能力,从而使批量测量中掩盖的结果得以曝光。在本文中,这些有利的特性将用于合成(固态)纳米孔系统和工程生物纳米孔。我将描述在氮化硅薄膜中生产固态纳米孔的技术,以及如何将这些纳米孔整合到功能齐全的纳米孔传感器系统中。然后,我将探讨该系统的两个应用程序。首先,研究了在血清中发现的一种蛋白质牛血清白蛋白(BSA)在单分子水平上对氮化物无机表面的吸附。将显示描述此蛋白质在纳米孔中行为的简单物理模型。其次,研究了HIV-1的核衣壳蛋白(NCp7)与三种不同亲和力的适体的结合,特别是茎环3(SL3)RNA(基因组RNA的包装结构域)的三个20mer序列模拟物。另外,已知可以抑制NCp7与高亲和力SL3 RNA适体结合的N-乙基马来酰亚胺,将证明可以实时监测对结合的抑制。纳米孔系统,我将通过使用惰性聚合物探测纳米孔内部,探索新设计的生物纳米孔FhuAΔC/Δ4L的几何形状。

著录项

  • 作者

    Niedzwiecki, David J.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Nanoscience.;Biophysics General.;Physics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号