首页> 外文学位 >Dynamic finite element analysis of bioprosthetic heart valves with an experimentally derived material model.
【24h】

Dynamic finite element analysis of bioprosthetic heart valves with an experimentally derived material model.

机译:使用人工衍生的材料模型对生物人工心脏瓣膜进行动态有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we implement an experimentally derived material model for both planar and flexural deformations into FE analysis. Structural analysis investigations of BHV leaflets are performed through the FE implementation of the nonlinear anisotropic material model. Numerical simulations of BHV operation are then performed with the developed FE model for the opening and closing phases under physiological conditions.; A number of previous studies of BHV employing FE methods are reviewed. We investigate the significance as well as limitations of those previous studies and propose a new approach intended to the implementation of more realistic material models into the FE analysis of BHV. The basic concept of FE method is briefly described including FE formulations for nonlinear membrane-type structures. The importance of a realistic nonlinear material model and an appropriate element type in the FE analysis of soft tissue structures is emphasized. In this respect, it is proposed to perform the FE implementation of the most appropriate FE model for BHV leaflets based on experimental data. Bovine pericardial BHV leaflet specimens are utilized in the biaxial mechanical test and the experimental data are employed for the FE implementation of the nonlinear anisotropic material model for planar deformation. The three-point bending test with bovine pericardial BHV leaflet specimens is described and nonlinear bending moment-curvature relationships are obtained. A new material model determined by the experimentally determined nonlinear bending moment-curvature relationship is implemented into the FE code for flexural deformation. Then the flexural material model is combined with the previously developed planar model. The dynamic FE analysis of the pericardial BHV is performed and compared to the previously performed analyses. Contact element is introduced to simulate the comprehensive valve operation for the complete cardiac cycle since the closing phase includes the coaptation phenomenon between the leaflets. After we make conclusions and describe the limitations of the present study, several future studies are proposed as the last part.; The present study will make a contribution to the current computational approaches for developing new designs or improving the functional characteristics of BHV.
机译:在这项研究中,我们将实验导出的材料模型用于平面和弯曲变形纳入有限元分析。 BHV小叶的结构分析研究是通过非线性各向异性材料模型的有限元实现进行的。然后,利用已开发的有限元模型对生理条件下的打开和关闭阶段进行BHV操作的数值模拟。回顾了以前使用有限元方法进行BHV的许多研究。我们调查了这些先前研究的意义和局限性,并提出了一种新方法,旨在将更现实的材料模型实施到BHV的有限元分析中。简要描述了有限元方法的基本概念,包括用于非线性膜型结构的有限元公式。强调了在软组织结构的有限元分析中,逼真的非线性材料模型和适当的元素类型的重要性。在这方面,建议根据实验数据对BHV传单执行最合适的FE模型的FE实施。牛心包BHV小叶标本用于双轴力学测试,并将实验数据用于平面各向异性的非线性各向异性材料模型的有限元实现。描述了牛心包BHV小叶标本的三点弯曲试验,并获得了非线性弯曲力矩-曲率关系。由实验确定的非线性弯矩-曲率关系确定的新材料模型被应用于弯曲变形的FE代码中。然后,将挠曲材料模型与先前开发的平面模型相结合。对心包BHV进行动态有限元分析,并将其与先前进行的分析进行比较。由于闭合阶段包括小叶之间的接合现象,因此引入了接触元件来模拟整个心脏周期的全面瓣膜操作。在我们得出结论并描述了本研究的局限性之后,提出了一些未来的研究作为最后一部分。本研究将为开发新设计或改善BHV的功能特性的当前计算方法做出贡献。

著录项

  • 作者

    Kim, Hyunggun.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Biomedical.; Health Sciences Medicine and Surgery.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号