首页> 外文学位 >Lithium isotopic systematics of the continental crust.
【24h】

Lithium isotopic systematics of the continental crust.

机译:大陆壳锂同位素系统学。

获取原文
获取原文并翻译 | 示例

摘要

In order to fully utilize Li isotopes as a geochemical tracer, it is necessary to characterize the Li isotopic compositions of different geological reservoirs, and quantify the magnitude of isotopic fractionations for various conditions and compositions. However, our knowledge of Li isotope geochemistry is mostly limited to the hydrosphere and mantle. Little is known about either the Li isotopic composition of the continental crust or the mechanisms by which Li isotopes are fractionated.; The primary objective of this thesis is to characterize the Li isotopic composition of the continental crust. Over 50 upper crustal rocks including loess, shale, granite, and upper crustal composites, have been measured and show a limited range of Li isotopic composition (-5 to +5), with an average (0 +/- 2‰ at 1sigma) that is lighter than the average upper mantle (+4 +/- 2‰). More than 70 high-grade metamorphic rocks, including granulite xenoliths and composite samples from high-grade metamorphosed terranes have been analyzed to constrain the Li isotopic composition of the deep crust. Thirty composite samples from eight Archean terranes show mantle-like Li isotopic composition (+4 +/- 1.4‰ (at 1sigma)) while 44 granulite xenoliths display a much larger Li isotopic range from -17.9‰ to +15.7 with an average of -1 +/- 7‰ (1sigma), isotopically lighter than the mantle.; These data indicate that the continental crust on average has a lighter Li isotopic composition than the upper mantle from which it was derived. Given that Li isotopes do not fractionate during high-T magmatism, juvenile crust and the mantle should have identical Li isotopic compositions. Therefore, the isotopically light continental crust is likely the result of secondary processes, e.g., weathering, metamorphism and low-T intracrustal melting. Previous studies have shown that weathering can strongly fractionate Li isotopes, with heavy Li leaching into the hydrosphere, leaving the rock residue isotopically light. Studies carried out in this thesis indicate that Li isotopes can be fractionated by diffusion, metamorphic dehydration and granite differentiation. Collectively, these processes shift the continental crust to isotopically lighter and the hydrosphere heavier than the mantle with respect to delta7Li.
机译:为了充分利用锂同位素作为地球化学示踪剂,有必要表征不同地质储层的锂同位素组成,并对各种条件和成分的同位素分馏幅度进行量化。但是,我们对锂同位素地球化学的知识大多仅限于水圈和地幔。对于大陆壳的Li同位素组成或Li同位素的分馏机制知之甚少。本论文的主要目的是表征大陆壳的锂同位素组成。已测量了50多个上地壳岩石,包括黄土,页岩,花岗岩和上地壳复合物,它们显示出有限的锂同位素组成范围(-5至+5),平均范围为(1σ时为0 +/- 2‰)比上地幔要轻(+4 +/- 2‰)。分析了70多个高级变质岩,包括花岗石异岩和高级变质地层的复合样品,以约束深地壳的Li同位素组成。来自八个太古宙地层的30个复合样品显示出类似地幔的Li同位素组成(+4 +/- 1.4‰(在1sigma)),而44个粒状异种岩显示出更大的Li同位素范围,从-17.9‰到+15.7,平均- 1 +/- 7‰(1sigma),同位素比地幔轻。这些数据表明,大陆地壳的锂同位素组成平均要比其起源的上地幔轻。考虑到锂同位素在高T岩浆作用期间不会分馏,因此幼年地壳和地幔应具有相同的锂同位素组成。因此,同位素轻的大陆壳可能是次级过程的结果,例如风化,变质和低T壳内融化。先前的研究表明,风化能强烈地分离锂同位素,重的锂浸入水圈,使岩石残渣同位素轻。本论文进行的研究表明,Li同位素可以通过扩散,变质脱水和花岗岩分化来分离。总的来说,这些过程相对于delta7Li,大陆壳向同位素变轻,水圈比地幔重。

著录项

  • 作者

    Teng, Fang-Zhen.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Geochemistry.; Geology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号