首页> 外文学位 >Computer simulation studies of charge transfer through biological and artificial membrane channels.
【24h】

Computer simulation studies of charge transfer through biological and artificial membrane channels.

机译:通过生物和人工膜通道进行电荷转移的计算机模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

Biological membrane channels provide the fast and selective exchange of different substances (water, ions, etc...) between intra- and extracellular compartments. Recent determination of the atomic structures of the most important types of membrane channels makes it possible to attempt to derive macroscopically measurable properties of these channels (e.g., ionic current) from their atomic structures and thus to understand the physical mechanism of their action.; In this dissertation such structure-function relationships are studied by means of computer simulation. The limited power of modem supercomputers makes it impossible to simulate actual time-dependent charge transfer through membrane channels using all-atom simulations. In order to overcome this problem an integrated hierarchical approach is used. It combines all-atom MD or QM(EVB)/MM simulations with semi-microscopic calculations of the electrostatic free energy barrier which then is used in stochastic simulations of charge transfer through the channel.; Main results of the dissertation include: (1) an explanation of the mechanism of proton blockage in aquaporin water channels (AQP); (2) application of this mechanism for the theoretical construction of a water nanofilter based on a carbon nanotube membrane; (3) development of the multilevel model for simulation of current and selectivity of single ion channel based on its X-Ray structure and its application to KcsA potassium channel; (4) development of stochastic QM(EVB)/MM models for simulation of proton transport in solution and their application to the proton transport in the gramicidin channel.; The results of the simulations show that in all cases charge (both ion and proton) transport is controlled mainly by electrostatic effects (the interplay between the change of the charge self-energy and the energy of its interactions with protein polar groups).; These results are of interest for both basic science (understanding of fundamental physical mechanisms of charge transport in channels) and for (bio)nanotechnology (artificial water/ion channels).
机译:生物膜通道可在细胞内和细胞外区室之间快速选择性地交换不同物质(水,离子等)。最近对最重要类型的膜通道的原子结构的确定使得有可能试图从它们的原子结构中得出这些通道的宏观可测量的性质(例如离子电流),从而了解其作用的物理机理。本文通过计算机仿真研究了这种结构-功能关系。调制解调器超级计算机的功能有限,因此不可能使用全原子模拟来模拟通过膜通道的实际时间依赖性电荷转移。为了克服该问题,使用了集成的分层方法。它将全原子MD或QM(EVB)/ MM模拟与静电自由能垒的半微观计算相结合,然后将其用于通过通道的电荷转移的随机模拟。论文的主要结果包括:(1)对水通道蛋白水通道(AQP)中质子阻塞的机理进行了解释; (2)该机制在基于碳纳米管膜的水纳米过滤器的理论构造中的应用; (3)基于X射线结构的单离子通道电流和选择性模拟多级模型的开发及其在KcsA钾离子通道中的应用; (4)开发用于模拟溶液中质子传输的随机QM(EVB)/ MM模型,并将其应用于短杆菌肽通道中的质子传输。模拟结果表明,在所有情况下,电荷(离子和质子)的传输主要受静电作用控制(电荷自能的变化与其与蛋白质极性基团相互作用的能量之间的相互作用)。这些结果对于基础科学(了解通道中电荷传输的基本物理机制)和(生物)纳米技术(人工水/离子通道)均很有意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号