首页> 外文学位 >Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders.
【24h】

Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders.

机译:无斜盘直升机实验研究:带有压电弯管的后缘襟翼的主要控制。

获取原文
获取原文并翻译 | 示例

摘要

Helicopter rotor primary control is conventionally carried out using a swashplate with pitch links. Eliminating the swashplate promises to reduce the helicopter's parasitic power in high speed forward flight, as well as may lead to a hydraulic-less vehicle. A Mach-scale swashplateless rotor is designed with integrated piezobender-actuated trailing edge flaps and systematically tested on the benchtop, in the vacuum chamber and on the hoverstand. The blade is nominally based on the UH-60 rotor with a hover tip Mach number of 0.64. The blade diameter is 66 inches requiring 2400 RPM for Mach scale simulation. The rotor hub is modified to reduce the blade fundamental torsional frequency to less than 2.0/rev by replacing the rigid pitch links with linear springs, which results in an increase of the blade pitching response to the trailing edge flaps. Piezoelectric multilayer benders provide the necessary bandwidth, stroke and stiffness to drive the flaps for primary control while fitting inside the blade profile and withstanding the high centrifugal forces.;This work focuses on several key issues. A piezobender designed from a soft piezoelectric material, PZT-5K4, is constructed. The new material is used to construct multi-layer benders with increased stroke for the same stiffness relative to hard materials such as PZT-5H2. Each layer has a thickness of 10 mils. The soft material with gold electrodes requires a different bonding method than hard material with nickel electrodes. With this new bonding method, the measured stiffness matches precisely the predicted stiffness for a 12 layer bender with 1.26 inch length and 1.0 inch width with a stiffness of 1.04 lb/mil. The final in-blade bender has a length of 1.38 inches and 1.0 inch width with a stiffness of 0.325 lb/mil and stroke of 20.2 mils for an energy output of 66.3 lb-mil. The behavior of piezobenders under very high electric fields is investigated. High field means +18.9 kV/cm (limited by arcing in air) and -3.54kV/cm (limited by depoling). An undocumented phenomenon is found called bender relaxation where the benders lose over half of their initial DC stroke over time. While the bender stiffness is shown not to change with electric field, the DC stroke is significantly less than AC stroke.;A two-bladed Mach-scale rotor is constructed with each blade containing 2 flaps each actuated by a single piezobender. Each flap is 26.5% chord and 14% span for a total of 28% span centered at 75% of the blade radius. Flap motion of greater than 10 degrees half peak-peak is obtained for all 4 flaps at 900 RPM on the hoverstand. So, the flaps show promise for the Mach-scale rotor speed of 2400 RPM. A PID loop is implemented for closed loop control of flap amplitude and mean position.;On the hoverstand at 900 RPM, the swashplateless concept is demonstrated. The linear springs used to lower the torsional frequency are shown to have minimum friction during rotation. 1/rev blade pitching of ±1 degree is achieved at a torsional frequency of 1.5/rev for each blade. At resonance, the blade pitching for each blade is greater than ±4 degrees. Primary control is demonstrated by measuring hub forces and moments. At resonance state, the flaps in conjunction with the blade pitching provide ±15 lbs of normal force at a mean lift of 15 lbs yielding ±100% lift authority. Significant hub forces and moments are produced as well.;For a production swashplateless helicopter, it may be prudent to eliminate the pitch links by reducing the blade structural stiffness. A novel wire sensor system network is proposed in order to measure blade elastic flap bending, lead-lag bending and torsion. The theory for measuring blade twist is rigorously derived. A blade is constructed with the wire sensor network and validated on the benchtop for blade elastic bending and twist.;This work is a step forward in achieving a swashplateless rotor system. Not only would this reduce drag in high speed forward flight, but it would lead to a hydraulic-less rotorcraft. This would be a major step in vertical flight aviation.
机译:直升机旋翼的主要控制通常使用带有变距连杆的斜盘来进行。取消旋转斜盘有望减少直升机在高速向前飞行中的寄生功率,并可能导致无液压车辆。马赫级无旋转斜盘转子设计有集成的压电弯管驱动的后缘襟翼,并已在台式,真空室和悬停支架上进行了系统测试。该叶片名义上基于UH-60转子,其悬停尖端马赫数为0.64。叶片直径为66英寸,需要2400 RPM的马赫数模拟。转子轮毂经过修改,可通过用线性弹簧代替刚性节距连杆来将叶片基本扭转频率降低到小于2.0 / rev,从而增加了叶片对后缘襟翼的俯仰响应。压电多层弯曲机提供必要的带宽,冲程和刚度,以驱动襟翼进行主要控制,同时安装在叶片轮廓内部并承受高离心力。这项工作着重于几个关键问题。构造了由软压电材料PZT-5K4设计的压电弯曲机。与硬质材料(例如PZT-5H2)相比,这种新材料用于构造具有增加的冲程的多层弯管机,以保持相同的刚度。每层的厚度为10密耳。带金电极的软材料与带镍电极的硬材料需要不同的结合方法。使用这种新的粘合方法,测得的刚度与长度为1.26英寸,宽度为1.0英寸,硬度为1.04 lb / mil的12层弯曲机的预测刚度精确匹配。最终的刀片式弯曲机的长度为1.38英寸,宽度为1.0英寸,刚度为0.325磅/密耳,冲程为20.2密耳,能量输出为66.3磅密耳。研究了压电弯曲器在非常高的电场下的行为。高电场是指+18.9 kV / cm(受空气中电弧作用限制)和-3.54kV / cm(受极化影响)。发现了一种未记录的现象,称为弯曲器松弛,其中弯曲器随时间损失了其初始DC行程的一半以上。尽管显示出弯曲器的刚度不会随电场而变化,但直流冲程明显小于交流冲程。构造了一个两叶片马赫规模的转子,每个叶片包含2个襟翼,每个襟翼由单个压电弯曲器驱动。每个襟翼的弦长为26.5%,跨度为14%,以叶片半径的75%为中心,跨度总计为28%。在悬停支架上以900 RPM的转速获得的所有4个襟翼均获得大于10度半峰峰值的襟翼运动。因此,襟翼显示出2400 RPM的马赫级转子速度的希望。通过PID回路实现襟翼幅度和平均位置的闭环控制。在900 RPM的悬停支架上,演示了无斜盘的概念。示出了用于降低扭转频率的线性弹簧在旋转期间具有最小的摩擦。每个叶片的扭转频率为1.5 / rev时,叶片的1 / rev螺距为±1度。在共振时,每个叶片的叶片螺距均大于±4度。通过测量轮毂力和力矩来演示主要控制。在共振状态下,襟翼与叶片俯仰配合可在平均15磅的升力下提供±15磅的法向力,从而产生±100%的升力。同时也会产生很大的轮毂力和力矩。对于生产斜盘的直升飞机,最好通过降低叶片的结构刚度来消除变桨距。提出了一种新颖的线传感器系统网络,以测量叶片的弹性襟翼弯曲,超前滞后弯曲和扭转。严格推导了叶片扭曲的测量理论。叶片由金属丝传感器网络构成,并在台式机上经过验证,可以使叶片弹性弯曲和扭曲。该工作是实现无斜盘转子系统的又一步。这不仅会减少高速向前飞行中的阻力,而且会导致无液压旋翼飞机。这将是垂直飞行航空业的重要一步。

著录项

  • 作者

    Copp, Peter.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号