首页> 外文学位 >Bioresponse to polymeric substrates: Effect of surface energy, modulus, topography, and surface graft copolymers.
【24h】

Bioresponse to polymeric substrates: Effect of surface energy, modulus, topography, and surface graft copolymers.

机译:对聚合物基质的生物反应:表面能,模量,形貌和表面接枝共聚物的影响。

获取原文
获取原文并翻译 | 示例

摘要

Biofouling is the accumulation of biological matter on a substrate. It is essential to elucidate and model the major factors that affect both biological settlement and adhesion to substrates in order to develop coatings that minimize initial fouling or ease the removal of this fouling. To date, models that have estimated adhesion strength to coatings primarily included bulk elastic modulus and surface energy. Topography, however, has been found to dominate both these terms in the reduction of settlement and has been found to affect the adhesion strength as well.; Silicone foul release coatings have demonstrated moderate success in the prevention of marine biofouling because of their low modulus and low surface energy. Problems exist with durability and eventual fouling of the coating due to the overgrowth of foulants that prefer hydrophobic substrates. This research details the characterization and the surface and bulk modification of a commercially available silicone elastomer. The modifications include bulk additives, surface topography, and surface graft copolymers. The effect of these modifications on biological response was then assayed using the alga Ulva as a model for marine biofouling.; The unmodified silicone elastomer has a bulk modulus of approximately 1 MPa. The addition of vinyl functional polydimethylsiloxane oils allowed for a greater than 200% increase or a 90% decrease in the bulk modulus of the material. The addition of non-reactive polydimethylsiloxane oils allowed for a change in the surface lubricity of the elastomer without a significant change in the mechanical properties.; Topographical modifications of the surface show a profound effect on the bioresponse. Appropriately scaled engineered microtopographies replicated in the silicone elastomer can produce a 250% increase in algal zoospore fouling or an 85% reduction in settlement relative to a smooth silicone elastomer.; Finally, the modification of the surface energy of this material was achieved by acid catalyzed surface hydrolysis and subsequent grafting of poly(ethylene glycol), polysulfone, or perfluoropolyether. The water contact angle could be increased by 16% or decreased by 60% relative to the silicone elastomer control. These surfaces were characterized by various contact angle techniques, ATR-FTIR, and XPS. These surface grafts were also combined with the topographical modifications to evaluate the relative significance of these two factors on bioresponse.
机译:生物污染是生物物质在底物上的积聚。阐明和建模影响生物沉降和对基材附着力的主要因素是至关重要的,以便开发出能够使初始污垢最小化或易于清除这种污垢的涂层。迄今为止,估计涂层粘附强度的模型主要包括体积弹性模量和表面能。然而,已发现在减少沉降方面,形貌在这两个方面均占主导地位,并且也影响到粘合强度。有机硅防污涂料由于其低模量和低表面能,在防止海洋生物污垢方面已显示出中等程度的成功。由于倾向于疏水性基底的污垢的过度生长,存在耐久性和最终结垢涂层的问题。这项研究详细介绍了市售有机硅弹性体的表征以及表面和整体改性。改性包括本体添加剂,表面形貌和表面接枝共聚物。然后使用藻类Ulva作为海洋生物污染的模型来分析这些修饰对生物反应的影响。未改性的有机硅弹性体具有约1MPa的体积模量。乙烯基官能的聚二甲基硅氧烷油的加入允许材料的体积模量增加大于200%或减少90%。非反应性聚二甲基硅氧烷油的加入可以改变弹性体的表面润滑性,而机械性能没有明显改变。表面的形貌修饰对生物反应显示出深远的影响。相对于光滑的有机硅弹性体,在有机硅弹性体中复制适当比例的工程化微形貌可以使藻类游动孢子结垢增加250%,或使沉降减少85%。最后,通过酸催化的表面水解和随后接枝聚乙二醇,聚砜或全氟聚醚实现了该材料表面能的改性。相对于有机硅弹性体对照,水接触角可以增加16%或减少60%。这些表面通过各种接触角技术,ATR-FTIR和XPS进行了表征。这些表面移植物还与地形修改相结合,以评估这两个因素对生物反应的相对重要性。

著录项

  • 作者

    Wilson, Leslie Hoipkemeier.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号