首页> 外文学位 >Design of High Speed I/O Interfaces for High Performance Microprocessors.
【24h】

Design of High Speed I/O Interfaces for High Performance Microprocessors.

机译:高性能微处理器的高速I / O接口设计。

获取原文
获取原文并翻译 | 示例

摘要

Advances in CMOS process technology have enabled high performance microprocessors that run multiple threads in parallel at multi-gigahertz clock frequencies. The off-chip input/output (I/O) bandwidth of these chips should scale along with the on-chip computation capacity in order for the entire system to reap performance benefits. However, scaling of off-chip I/O bandwidth is constrained by limited physical pin resources, legacy interconnect technology and increasingly noisy on-chip environment. Limited power budgets and process/voltage/temperature (PVT) variations present additional challenges to the design of I/O circuits.;This thesis focuses on the need to improve timing margin at the data samplers in the receivers, to enable higher symbol-rates per channel. The first part of this thesis describes a technique to reclaim timing margin lost to jitter both in the transmitted data and sampling clock. The second part discusses two techniques to correct for static phase errors in the sampling clocks that can degrade timing margin. Two test-chips, designed and fabricated in 0.13microm CMOS technology, demonstrate the efficacy of these techniques.;An 8-channel, 5 Gb/s per channel receiver demonstrates a collaborative timing recovery architecture. The receiver architecture exploits synchrony in transmitted data streams in a parallel interface and combines error information from multiple phase detectors in the receiver to produce one global synthesized clock. Experimental results from the prototype test-chip confirm the enhanced jitter tracking bandwidth and lower dithering jitter on the recovered clock. This chip also enables measurements that demonstrate the advantages and disadvantages of employing delay-locked loops (DLL) in the receivers. Two techniques to condition the clock signals entering the DLL are proposed that reduce the errors in phase-spacing matching between adjacent phases of the DLL and improve receiver timing margins.;A digital calibration technique takes a more general and inclusive approach towards correcting phase-spacing mismatches in multi-phase clock generators. A shared-DAC scheme reduces the area consumption of phase-correction circuits by more than 60%. This technique is implemented to correct phase-spacing mismatches in a 8-phase 1.6 GHz DLL. Experiments performed on the test-chip demonstrate reduction in peak differential non-linearity (DNL) from 37 ps to 0.45 ps, while avoiding any additional jitter penalties from the shared-DAC scheme.
机译:CMOS工艺技术的进步使高性能微处理器能够在数GHz时钟频率下并行运行多个线程。这些芯片的片外输入/输出(I / O)带宽应随片上计算能力一起扩展,以使整个系统获得性能优势。但是,由于有限的物理引脚资源,传统的互连技术以及越来越嘈杂的片上环境,限制了片外I / O带宽的扩展。有限的功率预算和工艺/电压/温度(PVT)变化对I / O电路的设计提出了额外的挑战。;本文着眼于需要提高接收器中数据采样器的时序裕度以实现更高符号率的需求每个频道。本文的第一部分描述了一种回收在传输数据和采样时钟中由于抖动而丢失的时序裕量的技术。第二部分讨论了两种校正采样时钟中静态相位误差的技术,这些技术会降低时序裕量。用0.13微米CMOS技术设计和制造的两个测试芯片证明了这些技术的有效性。8通道,每通道5 Gb / s的接收器演示了协作式时序恢复架构。接收器体系结构利用并行接口中传输的数据流中的同步,并组合来自接收器中多个相位检测器的错误信息以产生一个全局合成时钟。原型测试芯片的实验结果证实,增强了抖动跟踪带宽,并降低了恢复时钟上的抖动抖动。该芯片还可以进行测量,这些测量表明了在接收器中采用延迟锁定环(DLL)的优缺点。提出了两种调节进入DLL的时钟信号的技术,它们可以减少DLL相邻相位之间的相位间隔匹配中的误差并提高接收器时序裕度。;数字校准技术采用了一种更通用和包容性的方法来校正相位间隔多相时钟发生器中的失配。共享DAC方案可将相位校正电路的面积消耗减少60%以上。实施此技术是为了纠正8相1.6 GHz DLL中的相间距失配。在测试芯片上进行的实验表明,峰值差分非线性(DNL)从37 ps降低到0.45 ps,同时避免了共享DAC方案带来的任何额外抖动损失。

著录项

  • 作者

    Agrawal, Ankur.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号