首页> 外文学位 >Heat transfer in high porosity open-celled metal foam with interstitial granular material.
【24h】

Heat transfer in high porosity open-celled metal foam with interstitial granular material.

机译:具有空隙颗粒材料的高孔隙度开孔金属泡沫中的热传递。

获取原文
获取原文并翻译 | 示例

摘要

The present basis of this work is a metal hydride application called the Thermal Cycling Absorption Process (TCAP). It consists of a long column containing a granular material called Pd/k (palladium (Pd) on kieselguhr). The effective thermal conductivity of Pd/k, as with most granular materials, is poor. Improving its thermal conductivity has many benefits since the absorption/desorption process must be rapid. High-porosity, open-celled, metal foam has been utilized in recent TCAP designs to enhance the thermal performance of the column with the Pd/k residing interstitially. The metal foam increases the parasitic thermal mass of the reactor bed and reduces the effective density of the active material; therefore, utilizing the metal foam requires optimization. The thermal characterization of the TCAP column has been empirical in nature, requiring tests of full-scale mockups. The overall goal of this research is to obtain a thermal design capability for foam---granular material systems with emphasis on the TCAP materials.; The interfacial heat transfer contact coefficients and surface areas are required in a multiple energy equation analysis. These are not well understood for TCAP and are investigated specifically. To accomplish this, an ideal three-dimensional foam model is presented that is shown to be self-consistent with respect to the foam intensive and extensive geometric properties and the thermal conductance. This was accomplished by comparing the foam model ideal geometry predictions to computed tomography measurements. Thermal conductance predictions using finite element analysis are compared to experimentally determined effective thermal conductivity measurements obtained in this study. The effective thermal conductivity of the column substrate material, kieselguhr, is measured versus pressure and gas type to address limitations in the literature. Correlations of this data indicate a sparsely connected intraparticle structure. The contact conductances of the foam---granular material system are also investigated: the wall-to-foam is investigated numerically based on existing empirical data and the kieselguhr-to-solid boundary is determined experimentally.; The combined heat transfer of the foam - granular material system is then analyzed numerically using data obtained for the individual components in this study. The effectiveness of the foam and local thermal equilibrium is investigated under various operating conditions.
机译:这项工作的当前基础是金属氢化物应用,称为热循环吸收工艺(TCAP)。它由一个长柱组成,其中包含称为Pd / k(硅藻土上的钯(Pd))的颗粒物质。与大多数颗粒材料一样,Pd / k的有效导热率很差。由于吸收/解吸过程必须迅速,因此提高其热导率具有许多好处。高孔隙度的开孔金属泡沫已用于最近的TCAP设计中,以提高Pd / k间隙存在的色谱柱的热性能。金属泡沫增加了反应器床的寄生热质量,并降低了活性材料的有效密度。因此,利用金属泡沫需要优化。 TCAP色谱柱的热表征本质上是经验性的,需要对全尺寸模型进行测试。这项研究的总体目标是获得泡沫-粒状材料系统的热设计能力,重点是TCAP材料。在多能量方程分析中需要界面传热接触系数和表面积。对于TCAP,这些还不是很了解,因此需要专门研究。为此,提出了一种理想的三维泡沫模型,该模型在泡沫密集和广泛的几何特性以及热导率方面表现出自洽性。这是通过将泡沫模型的理想几何预测与计算机断层扫描测量结果进行比较来完成的。使用有限元分析的热导率预测值与本研究中通过实验确定的有效热导率测量值进行了比较。相对于压力和气体类型,测量了柱基底材料硅藻土的有效导热率,以解决文献中的限制。该数据的相关性表明稀疏连接的颗粒内结构。还研究了泡沫-颗粒材料体系的接触电导:根据现有的经验数据对壁-泡沫进行了数值研究,并通过实验确定了硅藻土-固体边界。然后,使用在本研究中获得的各个组件的数据,对泡沫-颗粒材料系统的组合传热进行数值分析。在各种操作条件下研究了泡沫的有效性和局部热平衡。

著录项

  • 作者

    Schmierer, Eric Nichols.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号