首页> 外文学位 >Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics.
【24h】

Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics.

机译:用于非侵入性临床诊断的混浊介质中时间分辨荧光传输的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence spectroscopy and imaging methods, including fluorescence lifetime sensing, are being developed for a variety of non-invasive clinical diagnostic procedures, including applications to early cancer diagnosis. Here, both the theoretical developments and experimental validations of a versatile, numerical Monte Carlo code that models photon migration in turbid media to include simulations of time-resolved fluorescence transport are presented. The developed numerical model was used to study, for the first time, the dependence of time-resolved fluorescence signals emanating from turbid media on the optical transport coefficients, fluorophore properties and source-detector configurations in single-layered turbid media as well as more complex multi-layered turbid media. The numerical codes presented here can be adapted to model a wide range of experimental techniques measuring the optical responses of biological tissues to laser irradiation and are demonstrated here for two specific applications (a) to model time-resolved fluorescence dynamics in human colon tissues and (b) to extract the frequency-dependent optical responses of a model adult human head to an incident laser-source whose intensity was harmonically modulated i.e. simulating frequency-domain measurements.; Specifically, measurements of time-resolved fluorescence decays from a previous clinical study aimed toward detecting differences in tissue pathologies in patients undergoing gastro-intestinal endoscopy were simulated using the Monte Carlo model and results demonstrated that variations in tissue optical transport coefficients (absorption and scattering) alone could not account for the fluorescence decay differences detected between tissue pathologies in vivo. However, variations in fluorescence decay time as large as those detected clinically between normal and pre-malignant tissues (of 2 ns) could be accounted for by simulated variations in tissue morphology or biochemistry while intrinsic fluorophore lifetimes were held constant.; Potential applications of the numerical code for the construction of optimized fiber-probes for efficient clinical diagnostics and the reconstruction of tissue optical properties to match experimental measurements, possibly in real-time via the use of heuristic scaling procedures, are discussed.
机译:荧光光谱和成像方法,包括荧光寿命检测,正在开发用于各种非侵入性临床诊断程序,包括在早期癌症诊断中的应用。在这里,提出了一种通用的数值蒙特卡洛代码的理论发展和实验验证,该代码对混浊介质中的光子迁移进行建模,以包括时间分辨荧光传输的模拟。所开发的数值模型首次用于研究混浊介质发出的时间分辨的荧光信号对单层混浊介质中光学传输系数,荧光团性质和源-检测器结构的依赖性,以及更复杂的情况。多层混浊介质。此处显示的数字代码可适合于建模测量生物组织对激光辐射的光学响应的​​各种实验技术,并在此处针对两种特定应用进行了演示(a)建模人类结肠组织中时间分辨的荧光动力学,以及( b)提取成年模型人头部对入射激光源的频率依赖性光学响应,该入射激光源的强度被谐波调制,即模拟频域测量。具体而言,使用蒙特卡洛模型对先前旨在研究胃肠内窥镜检查患者组织病理学差异的临床研究中的时间分辨荧光衰减进行了测量,结果证明了组织光学传输系数的变化(吸收和散射)单独的方法不能解释体内组织病理之间检测到的荧光衰减差异。然而,在固有的荧光团寿命保持不变的情况下,可以通过模拟组织形态或生物化学变化来解释与正常和恶变前组织(2 ns)之间临床上检测到的荧光衰减时间一样大的变化。讨论了数字代码在构建用于有效临床诊断的优化纤维探针以及重建组织光学特性以匹配实验测量值(可能通过使用启发式缩放过程实时进行)方面的潜在应用。

著录项

  • 作者

    Vishwanath, Karthik.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号