首页> 外文学位 >Anisotropic porochemoelectroelastic solutions for applications in field operations and laboratory characterization of shale.
【24h】

Anisotropic porochemoelectroelastic solutions for applications in field operations and laboratory characterization of shale.

机译:各向异性多孔电磁弹性解决方案,用于现场作业和页岩的实验室表征。

获取原文
获取原文并翻译 | 示例

摘要

In this study, the porochemoelectroelastic formulation is explained in details and fully expanded to capture the well known anisotropic nature of shale. The formulation is then applied to derive the analytical solutions for rectangular strip sample, cylindrical sample, and inclined wellbore under various loading and in-situ conditions while being exposed to an external fluid. The newly-derived solutions can be considered as necessary extensions of some existing analytical solutions to capture the anisotropic and chemically active nature of shale formations. Numerical examples are also included to illustrate the applications of the derived solutions in shale formations. The results show that ignoring either the porochemoelectroelastic behavior or the anisotropic characteristic of the shale formation will mislead the predictions and assessment of potential problems in laboratory and field operations.;In particular, the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the sample and the external fluid with magnitude proportional to the CEC of the sample. This Donnan-induced pore pressure when coupled with the load-generated pore pressure and the activity-generated pore pressure can result in significant tensile effective stresses and tensile damages in the shale. The results, thus, explain why some shales disintegrate when brought into contact with certain aqueous solutions while others do not.;Practical implications for field operations have been drawn for both wellbore drilling and hydraulic fracturing. The analyses show clearly that the effective tangential stresses and, hence, the axial stresses around a wellbore are greatly affected by the formation anisotropic mechanical parameters. In addition, during drilling, the chemically-induced tensile effective radial stress and tangential stress can lead to wellbore spalling which in extreme cases may result in stuck pipe. On the other hand, during hydraulic fracturing, these induced tensile damages can weaken the shale formation leading to a wider fracture width and a shorter fracture length during the fracturing process. In addition, the damaged and weakened formation can exacerbate the problem of proppant embedment resulting in larger fracture closure and reduction of fracture length and productivity. Thus, the results explain why higher clay content intervals are often reported to be more "ductile" compared to lower clay content intervals. Moreover, the use of drilling mud and fracturing fluid having activity similar to the shale formation native pore fluid can help to prevent wellbore spalling and work for the advantage of the fracturing process.;In the laboratory testing context, these complex pore pressure, stresses responses and distributions can complicate the interpretation of experimental results for the effects of fluid chemistry on the rock matrix. Practically, it is recommended to gradually adjust the testing fluid salt concentration or applied load to the desired value so that excessive induced stress and pore pressure buildup inside the tested sample become minimal.;Finally, analysis for shale electrokinetic effects on pore pressure buildup during diagenesis suggests that, in addition to the intrinsically low permeability of shale, the semi-permeable membrane behavior of the clay matrix can effectively hinder the overall pore fluid diffusion process. As a result, the pore pressure buildup inside a shale formation can be much higher than in a clean sand formation under the same consolidation rate. Hence, taking into account shale electrokinetic effects in basin modeling may give better predictions of overpressure issues in shale.
机译:在这项研究中,对孔隙电弹性配方进行了详细解释,并充分扩展以捕获众所周知的页岩各向异性性质。然后将该配方应用于在各种载荷和原位条件下暴露于外部流体的情况下,得出矩形条状样品,圆柱形样品和倾斜井眼的分析溶液。新推导的溶液可以被认为是一些现有分析溶液的必要扩展,以捕获页岩地层的各向异性和化学活性。数值示例也包括在内,以说明导出的解在页岩地层中的应用。结果表明,忽略页岩层的孔隙电弹性行为或各向异性特征将误导对实验室和现场作业中潜在问题的预测和评估;特别是,粘土矿物表面上存在负固定电荷会产生样品和外部流体的界面处的渗透压,其大小与样品的CEC成正比。当Donnan引起的孔隙压力与载荷产生的孔隙压力和活动产生的孔隙压力相结合时,会导致页岩中明显的拉伸有效应力和拉伸损伤。因此,结果解释了为什么一些页岩在与某些水溶液接触时会崩解,而另一些则不会。。对于井眼钻探和水力压裂,已经对现场作业产生了实际意义。分析清楚地表明,有效切向应力以及井眼周围的轴向应力受地层各向异性力学参数的影响很大。此外,在钻井过程中,化学诱导的拉伸有效径向应力和切向应力会导致井眼剥落,在极端情况下可能会导致管道卡死。另一方面,在水力压裂过程中,这些引起的拉伸损伤会削弱页岩的形成,从而导致压裂过程中裂缝宽度更宽,裂缝长度更短。另外,受损和弱化的地层会加剧支撑剂包埋的问题,导致更大的裂缝闭合以及裂缝长度和生产率的降低。因此,该结果解释了为什么与较低的粘土含量间隔相比,较高的粘土含量间隔经常被报告为更具“延展性”。此外,使用具有类似于页岩地层天然孔隙流体活性的钻井泥浆和压裂液可以帮助防止井眼剥落并发挥压裂过程的优势。;在实验室测试的背景下,这些复杂的孔隙压力会增加响应压力分布可以使解释流体化学对岩石基质的实验结果复杂化。实际中,建议逐渐将测试液中的盐浓度或施加的负载调整到所需值,以使被测样品内部的过度感应应力和孔压累积最小化;最后,分析页岩电动势对成岩过程中孔压累积的影响这表明,除了页岩固有的低渗透性外,粘土基质的半渗透膜行为还可以有效地阻碍整个孔隙流体的扩散过程。结果,在相同固结速率下,页岩地层内部的孔隙压力累积可能比干净砂岩地层中的孔隙压力累积高得多。因此,在盆地建模中考虑页岩的电动效应可以更好地预测页岩中的超压问题。

著录项

  • 作者

    Tran, Minh H.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Engineering Petroleum.;Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号