首页> 外文学位 >Mitigation of CO2 emissions in thermochemical conversions of coal and biomass.
【24h】

Mitigation of CO2 emissions in thermochemical conversions of coal and biomass.

机译:减少煤炭和生物质热化学转化过程中的二氧化碳排放量。

获取原文
获取原文并翻译 | 示例

摘要

Carbonaceous materials can be converted to bio-oil using fast pyrolysis or produce synthetic gas (syngas) using gasification. Utilizing concentrated solar energy, instead of combusting fossil fuels to provide the heat required for these endothermic reactions, reduces CO2 emissions. Also, in situ CO2 capture can increase the production rate and yield of hydrogen in syngas and help mitigate CO2 emissions.;In the first part of this study, biomass fast pyrolysis and coal gasification using concentrated solar energy were numerically simulated. A two-dimensional single particle model was developed to predict the products composition from biomass fast pyrolysis, using solar energy under different solar heat fluxes. The results of this study emphasized the importance of secondary reactions in this process. The maximum bio-oil yields were in the range of 53-60% obtained between 460 and 500°C. Next, a one-dimensional two-phase model was developed to simulate coal gasification using solar energy. The present model considered gasification of coal with CO2 in a solar gasifier, which has not been numerically simulated previously. The findings of this study provided an insightful explanation on the existence of an optimal CO2 inlet velocity for maximum solar-to-chemical energy conversion. Also, the energy balance analysis showed 8% of the incoming solar energy was stored as enthalpy of produced CO, 52% was used in heating the coal particles and gases, and 40% was lost to the surroundings.;In the second part of this study, biomass gasification with in situ CO 2 capture in a single reactor, utilizing calcium oxide (CaO), has been studied. First, the experimental conversion data of CO2 carbonation using CaO were used to determine the capture capacity and to develop a kinetics model. Using the kinetics model, the activation energy of CaO carbonation using CaO was determined to be 23 and 16.5 kJ mol-1 for dry and moist (5% steam) streams, respectively. Next, the effects of temperature, reacting gas partial pressure, and CaO-to-biomass mass ratio on syngas composition have been investigated. In situ CO2 capture led to a significant increase in H2 concentrations (> 80%) compared to conventional biomass gasification with H2 concentrations in the range of 40-50%.
机译:碳质材料可以通过快速热解转化为生物油,也可以通过气化生成合成气(合成气)。利用集中的太阳能,而不是燃烧化石燃料来提供这些吸热反应所需的热量,可以减少二氧化碳的排放。此外,原位CO 2捕集可以提高合成气中氢气的生产率和产率,并有助于减少CO 2排放。在本研究的第一部分中,对利用集中太阳能进行的生物质快速热解和煤气化进行了数值模拟。建立了二维单粒子模型,以利用不同太阳热通量下的太阳能预测生物质快速热解的产物组成。这项研究的结果强调了在此过程中副反应的重要性。在460至500°C之间获得的最大生物油产率在53-60%的范围内。接下来,开发了一维两相模型来模拟使用太阳能的煤气化。本模型考虑了在太阳能气化炉中用CO2对煤进行气化,此前尚未进行数值模拟。这项研究的发现为最大的太阳能转化为化学能的最佳CO2入口速度的存在提供了深刻的解释。此外,能量平衡分析表明,有8%的入射太阳能被存储为产生的CO的焓,有52%的能量用于加热煤颗粒和气体,有40%的能量损失到了周围环境中。在一项研究中,已经研究了利用氧化钙(CaO)在单个反应器中原位捕获CO 2的生物质气化。首先,使用CaO对CO2碳酸化的实验转化数据用于确定捕集能力并建立动力学模型。使用动力学模型,对于干燥和潮湿(5%蒸汽)流,使用CaO进行的CaO碳酸化活化能分别确定为23和16.5 kJ mol-1。接下来,研究了温度,反应气体分压和CaO与生物质的质量比对合成气组成的影响。与传统的生物质气化相比,原位CO2捕获导致H2浓度显着增加(> 80%),而H2浓度在40-50%的范围内。

著录项

  • 作者

    Danaei Kenarsari, Saeed.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Engineering Mechanical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号