首页> 外文学位 >Dynamic damage evolution in aluminum as a model system for understanding FCC materials in extreme conditions.
【24h】

Dynamic damage evolution in aluminum as a model system for understanding FCC materials in extreme conditions.

机译:铝的动态损伤演变作为理解极端条件下FCC材料的模型系统。

获取原文
获取原文并翻译 | 示例

摘要

Materials play a key role in many emerging technologies. Future technologies in the energy and defense sectors will place huge demands on material performance with respect to stress, strain, temperature, and pressure. These applications require that the response of materials on dynamic (microsecond) time scales be predictable and controllable. Hence, the goal of this research project was to study the extreme environment of shock loaded damage evolution in aluminum as a model system for understanding dynamic response of FCC metals in these environments. Phase one utilized plate impact experiments to study the influence of spatial effects (in the form of microstructural defect distributions) on the dynamic damage evolution process. Samples were soft recovered for shot analysis and comparison to real time laser velocimetry. Results revealed that the length scale of defects controls the failure mechanisms of the microstructure; suggesting defect density and the spatial distribution of defects are critical factors in the deformation process in extreme environments. Phase two studied the influence of kinetic effects (in the form of dynamic tensile loading rate) to reveal time dependence on the dynamic deformation process. Results concluded damage nucleation and growth rates are highly time dependent and can be overdriven as higher tensile loading rates result in extremely short time durations. It was shown that laser velocimetry provides an adequate means for understanding the dynamic damage evolution process when soft recovery of the sample is unavailable. This was shown by comparing laser velocimetry results with data obtained from optical analysis on recovered specimens. The methodology here provides a means to systematically study materials of interest in extreme conditions and provides a pathway for obtaining the relevant physics needed for model development leading to a predictive capability.
机译:材料在许多新兴技术中起着关键作用。能源和国防领域的未来技术将在应力,应变,温度和压力方面对材料性能提出巨大要求。这些应用要求材料在动态(微秒)时标上的响应是可预测和可控制的。因此,本研究项目的目的是研究铝的冲击载荷损伤演变的极端环境,作为理解这些环境中FCC金属动态响应的模型系统。第一阶段利用板撞击实验来研究空间效应(以微观结构缺陷分布的形式)对动态损伤演化过程的影响。对样品进行软回收以进行样品分析,并与实时激光测速仪进行比较。结果表明,缺陷的长度尺度控制着微观组织的破坏机理。表明缺陷密度和缺陷的空间分布是极端环境下变形过程中的关键因素。第二阶段研究了动力学效应(以动态拉伸加载速率的形式)的影响,以揭示时间对动态变形过程的依赖性。结果得出结论,损伤成核和生长速率与时间密切相关,并且由于较高的拉伸载荷速率会导致极短的持续时间,因此可能会被过度驱动。结果表明,当无法实现样品的软回收时,激光测速仪为了解动态损伤演变过程提供了充分的手段。通过比较激光测速结果与对回收标本进行光学分析获得的数据,可以看出这一点。这里的方法论提供了一种在极端条件下系统地研究感兴趣的材料的方法,并提供了获得模型开发所需的相关物理原理的途径,从而产生了预测能力。

著录项

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号