首页> 外文学位 >Algorithmic approaches to joint source-channel coding.
【24h】

Algorithmic approaches to joint source-channel coding.

机译:联合源信道编码的算法方法。

获取原文
获取原文并翻译 | 示例

摘要

A typical communication system includes two subsystems: source coding and channel coding. The goal of source coding is to remove redundancy from the source to utilize the communication channel efficiently and to reduce storage requirements; the goal of channel coding is to protect the source from channel noise by introducing controllable redundancy. By Shannon's source-channel separation theorem, the two subsystems can be optimized independently and performed sequentially without any sacrifice of optimality. The theorem, however, was developed asymptotically (using arbitrarily large coding blocks), and assuming that the channel condition is known and the communication is point to point. These conditions and assumptions seldom hold in practice. Practical systems of better performance can be built by the approach of joint source-channel coding (JSCC), in which the two subsystems are designed together rather than independently in tandem, and optimized simultaneously based on both source and channel characteristics.; The first JSCC technique to be studied is multiple description coding for robust transmissions over packet erasure channels. The basic idea is to create multiple descriptions of an original message, and deliver the descriptions independently through different routings. The receiver can reconstruct the message by any subset of those descriptions, and the reconstruction quality improves as the number of received packets increases. Reed-Solomon (RS) codes are used to correct channel erasure errors. We add uneven error protection (UEP) to consecutive segments of scalable source sequence with the redundancy strength of RS codes proportional to the importance of different segments. We study the problem of optimal allocation of RS code to protect scalable source sequence over packet erasure channels in the sense the expected reconstruction distortion is minimized.; In Chapter 3, we consider the maximum a posteriori (MAP) decoding of variable length codes over noisy channels. MAP detection and estimation is a useful tool in joint source-channel coding (JSCC), which exploits the residual redundancy remaining in the source code to correct/alleviate transmission errors even in the absence of channel code. We study the MAP decoding of variable length encoded Markov sequences over a binary symmetric channel (BSC) with or without the knowledge of the count of transmitted source symbols. Later, the noisy channel model is extended to a BSC with insertion and deletion errors, and a MAP decoding algorithm is proposed for such a channel.; In Chapter 4, we study the joint source channel decoding (JSCD) of VQ-coded two-dimensional signals like images. The basic idea is to scatter adjacent image VQ index bits into different packages, the packages are transmitted over packet erasure channels individually. At the decoder end, damaged VQ indexes are recovered by exploiting residual redundancy remaining in image VQ indexes. The straightforward MAP decoding in the two dimensional case has high complexity. To circumvent this we propose a MAP estimator exploiting residual redundancy in the two-dimensional case through high order context modeling that does not suffer from the problems of high time and space complexities and context dilution.; Finally Chapter 5 concludes the dissertation by summarizing main contributions and suggesting some interesting future work.
机译:典型的通信系统包括两个子系统:源编码和信道编码。源代码编码的目的是消除源代码的冗余,以有效利用通信信道并减少存储需求。信道编码的目的是通过引入可控制的冗余来保护源免受信道噪声的影响。通过Shannon的源通道分离定理,可以独立优化两个子系统,并按顺序执行这两个子系统,而不会牺牲任何最优性。然而,该定理是渐近发展的(使用任意大的编码块),并假设信道条件已知并且通信是点对点的。这些条件和假设在实践中很少成立。可以通过联合源通道编码(JSCC)的方法来构建性能更好的实用系统,在该方法中,两个子系统是一起设计而不是一前一后地独立设计的,并根据源和通道特性同时进行优化。要研究的第一个JSCC技术是用于在数据包擦除信道上进行可靠传输的多描述编码。基本思想是创建原始消息的多个描述,并通过不同的路由独立传递描述。接收器可以通过那些描述的任何子集来重构消息,并且随着接收到的分组数量的增加,重构质量会提高。 Reed-Solomon(RS)码用于纠正信道擦除错误。我们对可伸缩源序列的连续段添加不均匀错误保护(UEP),RS码的冗余强度与不同段的重要性成正比。在预期的重构失真最小的意义上,我们研究了RS码的最佳分配问题,以保护数据包擦除信道上的可扩展源序列。在第三章中,我们考虑了在噪声信道上可变长度码的最大后验(MAP)解码。 MAP检测和估计是联合源通道编码(JSCC)中的有用工具,它可以利用源代码中保留的剩余冗余来纠正/减轻传输错误,即使没有通道代码也是如此。我们研究在二进制对称信道(BSC)上可变长度编码的Markov序列的MAP解码,无论是否知道传输源符号的数量。随后,将噪声信道模型扩展到具有插入和删除错误的BSC,并针对该信道提出MAP解码算法。在第4章中,我们研究了VQ编码的二维信号(如图像)的联合源通道解码(JSCD)。基本思想是将相邻的图像VQ索引位分散到不同的包中,这些包分别在数据包擦除通道上传输。在解码器端,通过利用图像VQ索引中剩余的剩余冗余来恢复损坏的VQ索引。二维情况下的直接MAP解码具有很高的复杂性。为了解决这个问题,我们提出了一种MAP估计器,该估计器通过高阶上下文建模在二维情况下利用残留冗余,而不会遭受高时空复杂性和上下文稀释的问题。最后,第五章通过总结主要贡献并提出一些有趣的未来工作来结束本论文。

著录项

  • 作者

    Wang, Zhe.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号