首页> 外文学位 >Aerodynamic design and optimization of turbomachinery blading.
【24h】

Aerodynamic design and optimization of turbomachinery blading.

机译:涡轮机械叶片的气动设计和优化。

获取原文
获取原文并翻译 | 示例

摘要

Aerodynamic shape optimization of gas turbine blades is a very challenging task, given e.g. the flow complexity, the stringent performance requirements, the structural and manufacturing constraints, etc.... This work addresses the challenge by automating the optimization process through the development, implementation and integration of state-of-the-art shape parametrization, numerical optimization methods, Computational Fluid Dynamics (CFD) algorithms and computer architectures. The resulting scheme is successfully applied to single and multi-point aerodynamic shape optimization of several cascades involving two-dimensional transonic and subsonic, viscous and inviscid flow in compressor and turbine cascades.; The optimization objective is to achieve a better aerodynamic performance, subject to aerodynamic and structural constraints, over the full operating range of gas turbine cascades by varying the blade profile. That profile is parameterized using a Non-Uniform Rational B-Splines (NURBS) representation, which is flexible accurate and capable of representing the blade profiles with a relatively small number of control points for a given tolerance. The NURBS parameters are then used as design variables in the optimization process.; The optimization objective is determined from simulating the flow using an in-house CFD code that solves the two-dimensional Reynolds-Averaged Navier-Stokes (or Euler) equations using a cell-vertex finite volume method on an unstructured triangular mesh and turbulence is modeled using the Baldwin-Lomax model.; To save computing time significantly, Artificial Neural Network (ANN) is used to build a low fidelity model that approximates the optimization objective and constraints. Moreover, to reduce the computing wall-clock time, the optimization scheme was parallelized on an SGI ALTIX 3700 machine using Message Passing Interface (MPI), resulting in a parallelization efficiency of almost 100%.; Different numerical optimization methods (genetic algorithm, simulated annealing and sequential quadratic programming) were developed, tested and implemented for the different parts of this work.; The present choice of objective function and optimization methodology results in a significant improvement in performance for all the cascades that were optimized, without violating the design constraints. The use of ANN results in a ten-fold speed-up of the design process and the scheme parallelization allows for further reduction of the wall-clock time.
机译:给定例如,燃气轮机叶片的空气动力学形状优化是非常艰巨的任务。流程的复杂性,严格的性能要求,结构和制造限制等。这项工作通过开发,实施和集成最先进的形状参数化,数值优化来自动化优化过程,从而解决了挑战方法,计算流体动力学(CFD)算法和计算机体系结构。所得方案成功地应用于压缩机和涡轮机叶栅中涉及二维跨音速和亚音速,粘性和不粘流的多个叶栅的单点和多点空气动力学形状优化。优化目标是通过改变叶片轮廓在燃气轮机叶栅的整个工作范围内,在受到空气动力学和结构约束的情况下获得更好的空气动力学性能。该轮廓是使用非均匀有理B样条曲线(NURBS)表示进行参数化的,该表示具有灵活的准确性,并且能够在给定的公差范围内以相对较少的控制点来表示叶片轮廓。然后,将NURBS参数用作优化过程中的设计变量。通过使用内部CFD代码模拟流动来确定优化目标,该内部CFD代码在非结构化三角网格上使用单元顶点有限体积方法求解二维雷诺平均Navier-Stokes(或Euler)方程,并进行建模使用Baldwin-Lomax模型。为了显着节省计算时间,人工神经网络(ANN)用于建立一个逼近优化目标和约束条件的低保真度模型。此外,为减少计算时钟时间,该优化方案在使用消息传递接口(MPI)的SGI ALTIX 3700机器上进行了并行化,并行化效率接近100%。针对这项工作的不同部分,开发,测试和实现了不同的数值优化方法(遗传算法,模拟退火和顺序二次编程)。目标函数和优化方法的当前选择可在不违反设计约束的情况下,为所有优化的级联带来显着的性能提升。使用ANN可以使设计过程加快十倍,而方案并行化则可以进一步减少挂钟时间。

著录项

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号