首页> 外文学位 >Computational Prediction of RNA Secondary Structure with Applications to RNA Viruses.
【24h】

Computational Prediction of RNA Secondary Structure with Applications to RNA Viruses.

机译:RNA二级结构的计算预测及其在RNA病毒中的应用。

获取原文
获取原文并翻译 | 示例

摘要

RNA is key in gene expression, and is responsible for multiple catalytic and regulatory mechanisms in the cell. An important step toward understanding RNA function is determining its structure. Computational approaches have become integral to this process, particularly those that predict structure based on the thermodynamics of RNA folding. RNA secondary structure, defined as the collection of canonical base pairs, provides significant information about function. Methods for predicting secondary structure of single-stranded molecules have been refined to become both sophisticated and accurate, but prediction of RNA-RNA interactions has remained a computational challenge. The role of intramolecular structure formation and its influence on determining RNA-RNA interactions is significant, but is a difficult problem that is computationally expensive to solve. A novel algorithm for predicting RNA-RNA interactions was developed that utilizes pseudo-free energy minimization. This is an extension to standard free energy minimization that uses the single-stranded partition function calculations to predict the probability that each nucleotide is involved in self-structure. A pseudo-energy penalty is administered to each nucleotide based on its propensity to form self-structure, augmenting the prediction of RNA-RNA interactions. This algorithm provides a statistically significant increase in sensitivity over the best known method for generalized RNA-RNA interaction prediction. The gold standard for structure determination is comparative sequence analysis. In this method, multiple homologous RNA sequences are compared to identify conserved structure. The accuracy of such structure prediction methods is reliant upon an initial primary sequence alignment that is informative and accurate. Pairwise Hidden Markov models (HMMs) are frequently used for RNA sequence alignment. These algorithms are trained to generate a probabilistic alignment for two sequences at a time. Probabilistic pairwise alignment is currently an important first step in building a multiple sequence alignment for use in automated prediction of conserved secondary structure. An HMM that simultaneously aligns three sequences was developed and benchmarked using the Rfam database of multiple sequence alignments. To our knowledge this is the first algorithm to consider three sequences simultaneously, as each sequence added over pairwise significantly increases the computational demand.
机译:RNA是基因表达的关键,并负责细胞中的多种催化和调节机制。理解RNA功能的重要一步是确定其结构。计算方法已成为该过程不可或缺的一部分,特别是那些基于RNA折叠热力学预测结构的方法。 RNA二级结构定义为规范碱基对的集合,可提供有关功能的重要信息。预测单链分子二级结构的方法已经完善,既复杂又准确,但是预测RNA-RNA相互作用仍然是计算难题。分子内结构形成的作用及其对确定RNA-RNA相互作用的影响是重要的,但是这是一个难以解决的问题,解决起来在计算上昂贵。开发了一种利用伪自由能最小化来预测RNA-RNA相互作用的新算法。这是对标准自由能最小化的扩展,它使用单链分配函数计算来预测每个核苷酸参与自身结构的可能性。根据每个核苷酸形成自身结构的倾向,对每个核苷酸进行伪能量惩罚,从而增强了RNA-RNA相互作用的预测。与广义RNA-RNA相互作用预测的最广为人知的方法相比,该算法在统计学上显着提高了灵敏度。结构确定的金标准是比较序列分析。在该方法中,比较了多个同源RNA序列以鉴定保守结构。这种结构预测方法的准确性取决于信息丰富且准确的初始一级序列比对。成对隐马尔可夫模型(HMM)通常用于RNA序列比对。这些算法经过训练,可以一次生成两个序列的概率比对。当前,概率成对比对是构建用于自动预测保守二级结构的多序列比对的重要第一步。使用多个序列比对的Rfam数据库,开发了同时比对三个序列的HMM并进行了基准测试。据我们所知,这是第一种同时考虑三个序列的算法,因为成对添加的每个序列都会大大增加计算量。

著录项

  • 作者

    DiChiacchio, Laura.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biophysics General.;Biology Virology.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号