首页> 外文学位 >Cellular Mechanisms of Calcium-Mediated Triggered Activity.
【24h】

Cellular Mechanisms of Calcium-Mediated Triggered Activity.

机译:钙介导的触发活动的细胞机制。

获取原文
获取原文并翻译 | 示例

摘要

Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those proteins. How those various factors interact synergistically to promote DADs is not well understood. Furthermore, at an even more basic level, it remains unclear to what degree spontaneous Ca2+ release and the appearance of DADs are deterministic, meaning reproducible under identical conditions, or inherently stochastic like nucleation in the physical context of phase transitions.;In this thesis, we use and further develop a biologically detailed computational model to investigate basic aspects of TA in isolated heart cells (cardiac myocytes). Isolated cells can be obtained by enzymatic dissociation of heart tissue and studied experimentally using standard electrophysiological recording methods and confocal imaging of Ca2+ dynamics. Hence they provide a well controlled setting to investigate the generation of DADs under well controlled conditions. Our computational model captures essential aspects of the hierarchical architecture of ventricular myocytes, which consists of a large number of approximately 20,000 to 50,000 regularly spaced submicron regions containing clusters of 50-100 Ryanodine receptor (RyR) Ca2+ release channels. Each of those regions acts as a discrete "calcium release unit'' (CRU). Therefore our model allows us to address for the first time quantitatively the fundamental question of whether Ca2+ release, which is highly stochastic at the level of a single calcium release unit, is stochastic or deterministic at the whole cell level where the Ca 2+ signal is the summation of releases from a large number of units. Addressing this question is the focus of the first part of this thesis. Our results demonstrate that both the initiation and termination of TA are highly stochastic at the whole cell level due to the spatiotemporal organization of discrete release events into multiple Ca2+ waves. Our results allow us to characterize the probability distributions that govern the number of DADs preceding a triggered action potential and the number of triggered action potentials after termination of periodic stimulation. We show that a limit cycle underlies the bi-directionally coupled dynamics of membrane of voltage and Ca2+ when TA is sustained for long intervals. Furthermore, we construct a simple theoretical model that allows us to relate the shape of those distributions to the statistics and properties of Ca 2+ waves. The second part of this thesis focuses on investigating TA in the context of a specific mutation of a calcium buffering protein calsequestrin (CSQN). This mutation underlies catecholaminergic polymorphic ventricular tachycardia (CPVT), which is a pathophysiological condition that affects a subset of the human population. Our results shed light on the mechanisms by which altered Ca2+ buffering and altered kinetics of RyR Ca 2+ release channels as a direct and indirect effect of this mutation, respectively, promote TA.
机译:威胁生命的心律不齐继续构成主要的健康问题。心室纤颤是心脏下腔室中电波湍流的一种复杂形式,它使心脏停止抽动,是美国自然死亡的最大原因。心房颤动是上心室波动的一种相关形式,反过来又是临床实践中最常见的心律失常。尽管迄今为止进行了广泛的研究,对心律不齐的机制仍知之甚少。众所周知,心脏细胞不应期的空间紊乱和触发活动(TA)共同有助于心律失常的发生和维持。 TA广义上是指在心脏的自然起搏器(窦房结)产生的两个正常波之间的时间间隔内,从心脏的一个小亚毫米区域异常产生单个或一系列异常激发波。 TA已通过实验广泛研究,并在几种病理条件下发生,其中心脏细胞中游离Ca2 +离子的细胞内浓度升高。在这种条件下,Ca2 +可以自细胞内储存而自发释放,从而驱动跨细胞膜将3Na +离子交换为一个Ca2 +离子的电流。正常激发后,该电流反过来使心脏细胞膜去极化。如果这种钙介导的“去极化后延迟”(DAD)足够大,则可以产生动作电位,虽然人们很欣赏自发性Ca2 +释放和DAD的心律失常重要性,但它们在心脏病理中的发生状况仍然很差钙超载只是其他几种可促进DAD的因素之一,包括交感神经刺激,膜离子通道和钙处理蛋白的不同表达水平以及这些蛋白的突变,这些因素如何协同相互作用促进DAD。此外,在更基本的水平上,尚不清楚自发的Ca2 +释放和DAD的出现在何种程度上是确定性的,意味着在相同条件下可重现,或在相变的物理环境中固有地像核一样是随机的。 ;在本文中,我们使用并进一步开发了生物学上详细的截肢模型,用于研究离体心脏细胞(心肌细胞)中TA的基本方面。分离的细胞可以通过心脏组织的酶解获得,并使用标准的电生理记录方法和Ca2 +动力学的共聚焦成像进行实验研究。因此,它们提供了良好的控制环境,以研究在良好控制的条件下DAD的产生。我们的计算模型捕获了心室肌细胞分级结构的基本方面,该结构由大量大约20,000至50,000个规则间隔的亚微米区域组成,其中包含50-100个Ryanodine受体(RyR)Ca2 +释放通道簇。这些区域中的每个区域都充当离散的“钙释放单位”(CRU),因此我们的模型允许我们首次定量解决基本的问题,即Ca2 +释放是否在单个钙释放水平上是高度随机的Ca 2+信号是大量单位释放的总和,在整个细胞水平上都是随机的或确定性的,解决这一问题是本论文第一部分的重点。由于离散释放事件在多个Ca2 +波中的时空组织,因此TA的终止和终止在整个细胞水平上都是高度随机的,我们的结果使我们能够表征控制触发动作电位之前DAD数量和DAD数量的概率分布。周期性刺激终止后触发动作电位我们发现极限循环是膜双向耦合动力学的基础当TA长时间维持时,电压和Ca2 +的e。此外,我们构建了一个简单的理论模型,使我们能够将这些分布的形状与Ca 2+波的统计量和性质相关联。本文的第二部分重点研究钙缓冲蛋白钙网蛋白(CSQN)特定突变的背景下的TA。该突变是儿茶酚胺能性多形性室性心动过速(CPVT)的基础,后者是一种影响部分人群的病理生理状况。我们的研究结果揭示了改变Ca2 +缓冲和改变RyR Ca 2+释放通道动力学的机制,分别是该突变的直接和间接作用,促进了TA。

著录项

  • 作者

    Song, Zhen.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Physics General.;Biophysics General.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号