首页> 外文学位 >Information theoretic secret key generation: Structured codes and tree packing.
【24h】

Information theoretic secret key generation: Structured codes and tree packing.

机译:信息理论秘密密钥生成:结构化代码和树包装。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key, and on algorithms for key construction. Various information theoretic security requirements of increasing stringency: weak, strong and perfect secrecy, as well as different types of sources: finite-valued and continuous, are studied. Specifically, three different models are investigated.;First, we consider strong secrecy generation for a discrete multiterminal source model. We discover a connection between secret key capacity and a new source coding concept of "minimum information rate for signal dissemination," that is of independent interest in multiterminal data compression. Our main contribution is to show for this discrete model that structured linear codes suffice to generate a strong secret key of the best rate.;Second, strong secrecy generation is considered for models with continuous observations, in particular jointly Gaussian signals. In the absence of suitable analogs of source coding notions for the previous discrete model, new techniques are required for a characterization of secret key capacity as well as for the design of algorithms for secret key generation. Our proof of the secret key capacity result, in particular the converse proof, as well as our capacity-achieving algorithms for secret key construction based on structured codes and quantization for a model with two terminals, constitute the two main contributions for this second model.;Last, we turn our attention to perfect secrecy generation for fixed signal observation lengths as well as for their asymptotic limits. In contrast with the analysis of the previous two models that relies on probabilistic techniques, perfect secret key generation bears the essence of "zero-error information theory," and accordingly, we rely on mathematical techniques of a combinatorial nature. The model under consideration is the "Pairwise Independent Network" (PIN) model in which every pair of terminals share a random binary string, with the strings shared by distinct pairs of terminals being mutually independent. This model, which is motivated by practical aspects of a wireless communication network in which terminals communicate on the same frequency, results in three main contributions. First, the concept of perfect omniscience in data compression leads to a single-letter formula for the perfect secret key capacity of the PIN model; moreover, this capacity is shown to be achieved by linear noninteractive public communication, and coincides with strong secret key capacity. Second, taking advantage of a multigraph representation of the PIN model, we put forth an efficient algorithm for perfect secret key generation based on a combinatorial concept of maximal packing of Steiner trees of the multigraph. When all the terminals seek to share perfect secrecy, the algorithm is shown to achieve capacity. When only a subset of terminals wish to share perfect secrecy, the algorithm is shown to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic bounds on the size and rate of the best perfect secret key generated by the algorithm. These bounds are of independent interest from a purely graph theoretic viewpoint as they constitute new estimates for the maximum size and rate of Steiner tree packing of a given multigraph. Third, a particular configuration of the PIN model arises when a lone "helper" terminal aids all the other "user" terminals generate perfect secrecy. This model has special features that enable us to obtain necessary and sufficient conditions for Steiner tree packing to achieve perfect secret key capacity.
机译:本文研究了一种用于多个网络终端生成密钥的多终端源模型,该模型具有对一组相关信号的优先访问和特权访问,并通过相互之间的公开讨论进行了补充。重点放在密钥容量的表征上,即可实现的密钥的最大速率,以及密钥构造的算法。研究了越来越严格的各种信息理论安全要求:弱,强和完美的保密性,以及不同类型的资源:有限值和连续的。具体来说,研究了三种不同的模型。首先,我们考虑了离散多终端源模型的强保密性。我们发现密钥容量和“信号传播的最小信息速率”这一新的源编码概念之间存在联系,该概念在多终端数据压缩中具有独立的意义。我们的主要贡献在于,对于该离散模型,表明结构化线性代码足以生成具有最佳速率的强秘密密钥。第二,对于具有连续观测值的模型(尤其是联合的高斯信号),可以考虑采用强保密性。在没有适合于先前离散模型的源编码概念的类似物的情况下,需要新技术来表征密钥容量以及设计用于密钥生成的算法。我们对密钥容量结果的证明,尤其是逆向证明,以及针对具有两个终端的模型的基于结构化代码和量化的密钥构造能力实现算法,构成了第二个模型的两个主要贡献。 ;最后,我们将注意力转向固定信号观察长度及其渐近极限的完美保密性生成。与依赖概率技术的前两个模型的分析相反,完美的密钥生成具有“零错误信息论”的本质,因此,我们依赖于组合性质的数学技术。所考虑的模型是“逐对独立网络”(PIN)模型,其中每对终端共享一个随机的二进制字符串,而不同的终端对共享的字符串相互独立。该模型受无线通信网络的实际方面(其中终端以相同频率进行通信)的推动,产生了三个主要贡献。首先,数据压缩中的完美无所不包的概念导致了用于PIN模型的完美秘密密钥容量的单字母公式;而且,该能力被证明是通过线性非交互式公共通信来实现的,并且与强大的秘密密钥能力相吻合。其次,利用PIN模型的多图表示,基于多图的Steiner树的最大压缩组合概念,提出了一种有效的完美密钥生成算法。当所有终端都试图共享完美的保密性时,该算法可以实现容量最大化。当只有一部分终端希望共享完美的保密性时,该算法可以实现至少一半的保密性。此外,我们获得了算法生成的最佳完美秘密密钥的大小和速率的非渐近和渐近边界。从纯粹的图形理论观点来看,这些界限是独立关注的,因为它们构成了给定多图的Steiner树堆积的最大大小和速率的新估计。第三,当一个单独的“帮助者”终端帮助所有其他“用户”终端产生完美的保密性时,就会出现PIN模型的特定配置。该模型具有特殊的功能,使我们能够为Steiner树包装获得必要和充分的条件,以实现完美的密钥容量。

著录项

  • 作者

    Nitinawarat, Sirin.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Applied Mathematics.;Information Science.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号