首页> 外文学位 >Towards RANS Parameterization of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves.
【24h】

Towards RANS Parameterization of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves.

机译:浅海沿海货架上朗缪尔湍流对垂直混合的RANS参数化。

获取原文
获取原文并翻译 | 示例

摘要

Langmuir turbulence in the upper ocean is generated by the interaction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves. In homogenous (neutrally stratified) shallow water, the largest scales of Langmuir turbulence are characterized by full-depth Langmuir circulation (LC). LC consists of parallel counter-rotating vortices aligned roughly in the direction of the wind. In shallow coastal shelves, LC has been observed engulfing the entire water column, interacting with the boundary layer and serving as an important mechanism for sediment re-suspension. In this research, large-eddy simulations (LES) of Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed deviations from classical log-layer dynamics in the surface and bottom of the water column. For example, mixing due to full-depth LC induces a large wake region eroding the classical bottom (bed) log-law velocity profile. Meanwhile, near the surface, Stokes drift shear serves to intensify small scale eddies leading to enhanced mixing and disruption of the surface velocity log-law. The modified surface and bottom log-layer dynamics induced by Langmuir turbulence and full-depth LC have important implications on Reynolds-averaged Navier-Stokes simulations (RANSS) of the general coastal ocean circulation. Turbulence models in RANSS are typically calibrated under the assumption of log-layer dynamics, which could potentially be invalid during occurrence of Langmuir turbulence and associated full-depth LC. A K-Profile Parameterization (KPP) of the Reynolds shear stress in RANSS is introduced capturing the basic mechanisms by which shallow water Langmuir turbulence and full-depth LC impact the mean flow. Single water column RANS simulations with the new parameterization are presented showing good agreement with LES.
机译:上层海洋的朗缪尔湍流是由风切变气流和地表重力波引起的斯托克斯漂移速度之间的相互作用产生的。在均质(中性分层)浅水中,最大规模的朗缪尔湍流具有全深度朗缪尔环流(LC)的特征。 LC由大致沿风向对齐的平行反向旋涡组成。在沿海浅水架上,已观察到LC吞没了整个水柱,与边界层相互作用,并成为沉积物重新悬浮的重要机制。在这项研究中,在风切变流中采用全深度LC对Langmuir湍流进行的大涡模拟(LES)揭示了与水柱表面和底部经典对数层动力学的偏差。例如,由于全深度LC引起的混合会导致较大的尾流区域腐蚀经典的底部(床)对数律速度曲线。同时,在地表附近,斯托克斯漂移剪切起到增强小尺度涡流的作用,从而导致表面速度对数律的增强混合和破坏。由朗缪尔湍流和全深度LC引起的改进的表面和底部对数层动力学对一般沿海海洋环流的雷诺平均Navier-Stokes模拟(RANSS)具有重要意义。 RANSS中的湍流模型通常是在对数层动力学的假设下进行校准的,这在Langmuir湍流和相关的全深度LC发生期间可能是无效的。介绍了RANSS中雷诺剪切应力的K轮廓参数化(KPP),以捕获浅水朗缪尔湍流和全深度LC影响平均流量的基本机理。提出了带有新参数化的单水塔RANS模拟,显示与LES很好的一致性。

著录项

  • 作者

    Sinha, Nityanand.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Civil.;Engineering Marine and Ocean.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号