首页> 外文学位 >Alkali-silica reaction: Chemical mechanism, thermodynamic modeling, and effects of lithium ions.
【24h】

Alkali-silica reaction: Chemical mechanism, thermodynamic modeling, and effects of lithium ions.

机译:碱二氧化硅反应:化学机理,热力学模型和锂离子的影响。

获取原文
获取原文并翻译 | 示例

摘要

The alkali-silica reaction (ASR) is one of the chemical distresses of concrete caused by reaction between reactive silica in aggregates and hydroxyl ions generated by alkalis present in the pore solutions. The present research focused on four areas: (a) chemical sequence and kinetics of the ASR processes, (b) thermodynamic modeling of the chemical sequence of the ASR processes, (c) the kinetics of alkali concentration in cementitious systems, and (d) the exploration of the state of lithium ions in ASR systems.;The first part of this thesis describes results obtained from the study focused on the kinetics of physical and chemical changes in the reactive aggregate-simulated pore solution system undergoing ASR. Specifically, the study investigated the products formed by exposing reactive silica mineral (alpha-cristobalite) to the mixture of three alkalis solutions containing solid calcium hydroxide (Ca(OH)2). The experimental results showed existence of a distinct chemical sequence (pattern) of the ASR processes: (a) the formation of calcium silica hydrate, (b) the formation of alkali binding polymerized calcium silica hydrate, c) the increase in concentration of silica ions in the solution, and (d) the formation of ASR gels.;These experimental results were used to develop thermodynamic model for the chemical sequence and kinetics of the ASR process, including the formulation of the kinetic rate law for silica dissolution (removal of silica from the reactive silica mineral). The innovative features of the kinetic rate law include the ability to account for such factors as pH, temperature, concentration of alkalis in solution, and type of the reactive silica mineral. Subsequently, the proposed kinetic rate low was used as an input to the commercial modeling software (Geochemist's WorkbenchRTM) to simulate the chemical sequence of the ASR process. The model generated reasonably accurate predictions of the distribution of species in the reacting system and captured several distinct features of experimental data (i.e. depletion of Ca(OH)2 levels, changes in alkali and silica concentrations, and pH values).;In addition, the kinetics of concentration of alkali ions in real cementitious system (mortar) undergoing ASR was investigated. The results of these investigations not only confirmed that (as expected) the concentration of alkali ions in pore solution of the system undergoing ASR will decrease but, more importantly, they also revealed that the rate of concentration change is linear with respect to the instantaneous (time dependent) concentration. This represents an important step toward the development of the chemo-mechanical model of ASR as it experimentally confirms the validity of a commonly used assumption of the first order reaction adequately representing the kinetics of the reaction process.;Finally, the thesis also presents the results of the study on the role of lithium ions in the ASR process. This study was performed using the following three experiments: (a) model reactor experiment (the reactive aggregate-simulated pore solution system undergoing ASR), (b) the analysis of pore solution in mortars containing either reactive aggregate (Jobe sand) or non-reactive aggregate (Ottawa sand) with three different dosages of LiNO3 (0, 0.26 and 0.74 of lithium to molar ratio), and (c) the mortar bar expansion tests performed on specimens exposed to the same three different dosages of LiNO3 as used in experiment (b). The experimental results strongly support one of the previously proposed mechanisms for the role of Li+ ions in controlling ASR. This mechanism involves the formation of the reaction products on the surface of the reactive aggregates, which prevents further hydroxyl ion attack of the particles. This part of the study also revealed that the substantial loss of lithium ions from the pore solution during the hydration period is mainly the result of their incorporation in the newly developing hydration products. In addition, the results of this study were used to develop a model for prediction of the loss of lithium ions from the pore solution during the hydration period. (Abstract shortened by UMI.).
机译:碱-二氧化硅反应(ASR)是混凝土中的化学问题之一,它是由骨料中的反应性二氧化硅与孔隙溶液中存在的碱所产生的氢氧根离子之间的反应引起的。本研究集中在四个领域:(a)ASR过程的化学顺序和动力学,(b)ASR过程的化学顺序的热力学建模,(c)胶结体系中碱浓度的动力学,以及(d)本论文的第一部分描述了从研究中获得的结果,该结果侧重于经历了ASR的反应性聚集体模拟的孔溶液系统的物理和化学变化的动力学。具体而言,该研究调查了通过将反应性二氧化硅矿物(α-方石英)暴露于含有固体氢氧化钙(Ca(OH)2)的三种碱溶液的混合物中而形成的产物。实验结果表明,ASR工艺存在独特的化学顺序(模式):( a)水合氧化硅钙的形成,(b)碱结合聚合水合氧化钙钙的形成,c)硅离子浓度的增加这些实验结果用于建立ASR工艺的化学顺序和动力学的热力学模型,包括制定二氧化硅溶解的动力学速率定律(去除二氧化硅)。来自活性二氧化硅矿物)。动速率定律的创新特征包括能够解释诸如pH值,温度,溶液中碱的浓度以及反应性二氧化硅矿物的类型等因素的能力。随后,建议的低动力学速率被用作商业建模软件(Geochemist's WorkbenchRTM)的输入,以模拟ASR工艺的化学顺序。该模型生成了对反应系统中物种分布的合理准确的预测,并捕获了实验数据的几个明显特征(例如,Ca(OH)2含量的减少,碱和二氧化硅浓度的变化以及pH值)。研究了实际胶结体系(砂浆)中ASR碱金属离子浓度的动力学。这些研究的结果不仅证实(如预期的那样)经历ASR的系统的孔溶液中碱金属离子的浓度会降低,而且更重要的是,它们还表明浓度变化率相对于瞬时(时间依赖性)浓度。这是朝着建立ASR的化学力学模型迈出的重要一步,因为它通过实验证实了能充分代表反应过程动力学的一阶反应的常用假设的有效性。最后,本文还提出了结果锂离子在ASR过程中的作用研究本研究使用以下三个实验进行:(a)模型反应器实验(反应性骨料模拟的经历ASR的孔溶液系统),(b)分析包含反应性骨料(乔贝砂)或非反应性骨料的砂浆中的孔溶液具有三种不同剂量的LiNO3(锂与摩尔比为0、0.26和0.74)的活性骨料(渥太华砂),以及(c)对与实验中使用的相同三种不同剂量的LiNO3接触的样品进行砂浆棒膨胀试验(b)。实验结果强烈支持了Li +离子在控制ASR中的作用的先前提出的机制之一。该机理涉及在反应性聚集体的表面上形成反应产物,这防止了进一步的羟基离子对颗粒的侵蚀。研究的这一部分还表明,在水合作用期间,锂离子从孔溶液中大量流失的主要原因是它们掺入了新开发的水合产物中。此外,这项研究的结果被用于开发一个模型,用于预测水合期间锂离子从孔溶液中的流失。 (摘要由UMI缩短。)。

著录项

  • 作者

    Kim, Taehwan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Civil.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号