首页> 外文学位 >Three-dimensional computerized breast phantom based on empirical data.
【24h】

Three-dimensional computerized breast phantom based on empirical data.

机译:基于经验数据的三维计算机化的乳房幻像。

获取原文
获取原文并翻译 | 示例

摘要

Breast imaging has improved the early detection of breast cancer thereby decreasing the mortality rate; however, thousands of women are wrongly diagnosed each year. Improving the sensitivity and specificity of breast cancer imaging is an important area of research and development. One of the major hurdles in imaging research arises from the difficulty in accruing human subject data because of cost, time, or patient risk considerations. Consequently, computerized phantoms are an important research tool that can help in developing new imaging techniques and devices. They can simulate a potentially unlimited amount of patient anatomies and provide a known truth with which to quantitatively evaluate, compare, and improve new imaging technologies in a cost-effective and efficient method. It is essential for computerized phantoms to be anatomically realistic and produce realistic imaging data such that results from studies utilizing the phantoms are indicative of what would occur in human subjects.;The purpose of this dissertation is to develop a three-dimensional computer generated breast phantom that is based on empirical data that can be used in breast imaging research. Currently available breast phantoms are either voxelized phantoms with fixed anatomy or flexible mathematical phantoms based on geometric primitives such as spheres and cylinders. In this work, we present the method to generate a suite of hybrid breast phantoms that combine the realism of a voxelized phantom with the flexibility to easily model anatomical variations by incorporating a mathematical basis.;The first step in phantom generation was to acquire and process the imaging data. We received dedicated breast computed tomography imaging data of pendant uncompressed breasts of human subjects from our collaborators at UC Davis. We implemented pre- and post-reconstruction algorithms to reduce the noise and scatter inherent in the images from the low-dose acquisition of the data and the cone-beam geometry of the CT system, respectively. Following image processing, we developed a custom volumetric segmentation algorithm to differentiate the breast tissues and maintain the high-resolution detail available in the imaging data. Derived from real human data, this step produced an anatomically realistic basis for the breast phantom.;Following segmentation, a subdivision surface model of the breast tissue was generated. This step introduced flexibility to the empirically based phantom by using a mathematical description for the breast tissue surfaces as subdivision surface models can be altered using affine or other transformations. This phantom can be used for imaging studies using an uncompressed geometry or it can be used to generate a finite element mesh of the breast to be used for a compression model.;Simulated compression of the breast phantom was achieved by applying finite element methods that can realistically deform the phantom. The material properties of the different types of breast tissue were incorporated into this model. Also, a comprehensive analysis of the different parameters that can affect breast phantom compression was performed. After simulated compression, the calculated deformations can be applied to the subdivision surface model to be used for studies on modalities with a compressed breast imaging geometry.;Simulated images can be generated directly from the subdivision surface model of the breast phantom with existing image simulation tools. We implemented an analytical projection algorithm that realistically models the x-ray imaging process and includes effects from quantum noise. Images were generated that exemplify the effect of different mechanical parameter assignments to the breast phantom tissue.;To further expand our database of imaging phantoms, we implemented deformation and morphing techniques to generate new and unique datasets from the limited number of original human subject datasets. In order to illustrate the full capabilities of the phantom, we generated simulated mammograms from several finite element compressed breast phantoms and are in the process of performing a user study to validate their level of realism. While early results from the phantom are promising, there are many future improvements to be made and futures studies to be conducted.;The presented work engenders a substantial advancement in tools for breast imaging research. We have successfully developed a suite of hybrid breast imaging phantoms that combine realistic anatomy with the flexibility of a mathematical approach. These phantoms can be used effectively for imaging research to develop and improve new imaging techniques and devices for breast cancer detection and prevention.
机译:乳房成像改善了乳腺癌的早期发现,从而降低了死亡率。但是,每年有数千名妇女被错误诊断。提高乳腺癌成像的敏感性和特异性是研究和开发的重要领域。成像研究的主要障碍之一是由于成本,时间或患者风险方面的考虑而难以获得人类受试者数据。因此,计算机模型是一种重要的研究工具,可以帮助开发新的成像技术和设备。他们可以模拟可能无限量的患者解剖结构,并提供已知的事实,以一种经济高效的方法定量评估,比较和改进新的成像技术。计算机幻像必须具有解剖学上的真实感并产生真实的成像数据,以使利用这些幻像进行的研究结果能够指示人类受试者中发生的事情。本论文的目的是开发三维计算机生成的乳房幻像。基于可用于乳房成像研究的经验数据。当前可用的乳房幻像是具有固定解剖结构的体素化幻像,或者是基于诸如球体和圆柱体的几何图元的灵活数学幻像。在这项工作中,我们提出了一种生成混合乳腺体模的方法,该方法结合了体素体模的真实性和灵活性,可以通过合并数学基础轻松建模解剖变化。;体模生成的第一步是获取和处理成像数据。我们从加州大学戴维斯分校的合作者那里获得了专用的胸部计算机断层摄影成像数据,该图像是人类受试者未受压迫的悬垂乳房的图像。我们实施了重构前和重构后算法,分别降低了数据的低剂量采集和CT系统的锥束几何形状带来的图像固有的噪声和散射。在图像处理之后,我们开发了一种自定义的体积分割算法,以区分乳房组织并保持成像数据中可用的高分辨率细节。从真实的人类数据得出,此步骤为乳房模型提供了解剖学上的现实基础。在分割之后,生成了乳房组织的细分表面模型。由于可以使用仿射或其他变换来更改细分表面模型,因此该步骤通过使用针对乳房组织表面的数学描述,为基于经验的幻像引入了灵活性。该体模可用于未压缩几何体的成像研究,也可用于生成用于压缩模型的乳房的有限元网格。乳房体模的模拟压缩是通过应用有限元方法实现的。实际使幻像变形。不同类型的乳腺组织的材料特性被纳入该模型。另外,对可能影响乳房幻影压迫的不同参数进行了综合分析。经过模拟压缩后,可以将计算出的变形应用于细分表面模型,以研究具有压缩乳房成像几何体的模态。使用现有的图像模拟工具,可以直接从乳房幻影的细分表面模型生成模拟图像。我们实现了一种分析投影算法,可以对X射线成像过程进行实际建模,并包括量子噪声的影响。生成的图像体现了对乳房幻像组织进行不同机械参数分配的效果。为了进一步扩展成像幻像的数据库,我们实施了变形和变形技术,从数量有限的原始人类受试者数据集中生成了新的独特数据集。为了说明幻影的全部功能,我们从几个有限元压缩的乳房幻影生成了仿真乳房X光照片,并且正在执行用户研究以验证其真实感。虽然幻影的早期结果令人鼓舞,但仍有许多未来的改进和未来的研究将要进行。提出的工作使乳房成像研究工具有了实质性的进步。我们已经成功开发了一套混合乳腺成像体模,将现实的解剖结构与数学方法的灵活性相结合。这些体模可以有效地用于影像学研究,以开发和改进用于乳腺癌检测和预防的新影像技术和设备。

著录项

  • 作者

    Hsu, Christina Marie Li.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Biomedical.;Health Sciences Radiology.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号