首页> 外文学位 >Numerical Study of Freestream Waves Receptivity and Nonlinear Breakdown in Hypersonic Boundary Layer.
【24h】

Numerical Study of Freestream Waves Receptivity and Nonlinear Breakdown in Hypersonic Boundary Layer.

机译:高超音速边界层自由流波接收率和非线性破坏的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Laminar-turbulent transition prediction in hypersonic boundary layer remains one of the most challenging topics in the design of hypervelocity vehicle. It requires thorough understanding of the physical mechanisms underlay freestream wave receptivity and nonlinear breakdown process. Freestream wave receptivity concerns the evolution of freestream disturbance passing through the shock and exciting the boundary layer normal modes that eventually become unstable. Nonlinear breakdown focuses on the study of the relevant mechanisms in the secondary instability region that leads to laminar-turbulent transition. These two topics have been extensively studied separately for decades. Significant progress has been made in terms of understanding how the instability waves form and develop in the early region as well as what are the viable paths from breakdown to turbulent. However, the linkage between receptivity and breakdown is still not well understood. The nature transition process commonly observed in hypersonic boundary layer consists of the following ingredients: freestream wave receptivity, linear growth, secondary instability and breakdown to turbulent. The transition location highly depends on the freestream wave disturbance profile. In order to attain a better understanding of the natural transition process, it is necessary to conduct a complete simulation from freestream wave receptivity all the way to nonlinear breakdown. This kind of simulation is considered beyond the capability of current computer power. The objective of current research is to devise a new three-step approach to simulate the flow from receptivity process to breakdown. In order to achieve the goal, direct numerical simulations (DNS) are performed over various freestream conditions and cone geometries to investigate the hypersonic boundary layer stability, freestream wave receptivity and nonlinear breakdown. In the study of nose bluntness effect on hypersonic boundary layer stability, three cone models with different nose radii are investigated by linear stability theory (LST). It is found that, if only considering the second-mode instabilities, the onset of instability is always delayed as the nose bluntness increases. In the effort to simulate the entire process from freestream wave receptivity to nonlinear breakdown, a new approach is applied to break the simulation into three steps: meanflow calculation, linear receptivity simulation and nonlinear breakdown simulation. Extensive case studies demonstrate that it is feasible to simulate the flow from receptivity to breakdown using our new simulation approach. From the breakdown simulations, it is found that the breakdown is the result of fundamental resonance that occurs between the two-dimensional second-mode wave and their three-dimensional modes. In the secondary instability growth region, the two-dimensional and three-dimensional modes need to attain the same amplitude level for the breakdown to take place.
机译:超音速边界层的层流湍流过渡预测仍然是超高速飞行器设计中最具挑战性的主题之一。它需要彻底了解自由流波接收性和非线性击穿过程的物理机制。自由流波的接受性与自由流扰动的演变有关,该扰动通过冲击并激发最终变得不稳定的边界层正常模式。非线性分解主要研究导致层流湍流过渡的次要不稳定区域的相关机制。几十年来,这两个主题已被广泛地单独研究。在理解不稳定波如何在早期地区形成和发展以及从崩溃到动荡的可行路径方面,已经取得了重大进展。但是,接受性和击穿之间的联系仍然不是很清楚。通常在高超音速边界层中观察到的自然转变过程包括以下成分:自由流波的接受度,线性增长,二次不稳定和湍流破裂。过渡位置很大程度上取决于自由流波的干扰分布。为了更好地理解自然过渡过程,有必要对自由流波的接受度一直到非线性击穿进行完整的模拟。这种模拟被认为超出了当前计算机的能力范围。当前研究的目的是设计一种新的三步法来模拟从接受过程到分解的过程。为了实现该目标,在各种自由流条件和锥面几何形状上进行了直接数值模拟(DNS),以研究高超音速边界层的稳定性,自由流波的接收能力和非线性击穿。在研究鼻钝度对高超声速边界层稳定性的影响时,采用线性稳定性理论(LST)研究了三种不同鼻径的锥体模型。已经发现,如果仅考虑第二模式不稳定性,则随着鼻子钝度的增加,不稳定性的发作总是被延迟。为了模拟从自由流波接收到非线性击穿的整个过程,采用了一种新方法将模拟分为三个步骤:平均流量计算,线性接收性模拟和非线性击穿模拟。大量的案例研究表明,使用我们的新模拟方法模拟从接受度到分解的流量是可行的。从击穿模拟中发现,击穿是二维第二模式波与其三维模式之间发生基本共振的结果。在次要不稳定性增长区域,二维模式和三维模式需要达到相同的振幅水平才能进行击穿。

著录项

  • 作者

    Lei, Jia.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号