首页> 外文学位 >Optimization Methods for Efficient Solution of Reformulated Microkinetic Models.
【24h】

Optimization Methods for Efficient Solution of Reformulated Microkinetic Models.

机译:有效重构配方微动力学模型的优化方法。

获取原文
获取原文并翻译 | 示例

摘要

Microkinetic models, combined with experimentally measured reaction rates and orders, play a key role in elucidating detailed reaction mechanisms in heterogeneous catalysis and have typically been solved as systems of ordinary differential equations (ODEs) or differential algebraic equations (DAEs). In the present work, we demonstrate a new approach to fitting those models to experimental data. For a small model of methanol synthesis by CO/CO 2 hydrogenation over a supported-Cu catalyst in a continuous stirred tank reactor (CSTR), we achieved a 1000-fold increase in solution speed by reformulating the microkinetic model from a system of ODEs to a system of nonlinear equations (NLP). The reduced computational cost allows a more systematic search of the parameter space, leading to better fits to the available experimental data.;We applied this approach to the full methanol synthesis network and identified over 200 good fits to the experimental data. We analyzed the fits to provide insight into the nature of the active site and reaction mechanism. We took the best of the fits obtained and optimized the experimental variables (pressure, temperature, feed rate and feed composition) to identify the conditions which predict a maximum production for methanol, the maximum production of methanol from CO2, or maximum conversion of CO or CO2 to methanol. We also performed optimizations to identify the best conditions to identify reactive intermediates on the catalyst surface.;Finally we took the first steps to extend our approach to plug flow reactors (PFRs) (which are described by systems of DAEs) using collocation on finite elements to transform the DAEs into an NLP. We used our transformed model to consider the optimal conditions for the water gas shift reaction on Cu.
机译:微观动力学模型,结合实验测量的反应速率和顺序,在阐明多相催化中详细的反应机理中起着关键作用,通常已作为常微分方程(ODE)或微分代数方程(DAE)的系统求解。在当前的工作中,我们演示了一种将这些模型拟合到实验数据的新方法。对于在连续搅拌釜式反应器(CSTR)中在负载型Cu催化剂上通过CO / CO 2加氢进行甲醇合成的小模型,我们将ODEs系统的微观动力学模型重新构建为溶液,从而将溶液速度提高了1000倍。非线性方程组(NLP)。降低的计算成本允许对参数空间进行更系统的搜索,从而更好地拟合可用的实验数据。;我们将这种方法应用于完整的甲醇合成网络,并确定了200多个拟合良好的实验数据。我们分析了拟合以提供对活性位点的性质和反应机理的了解。我们采用了获得的最佳拟合,并优化了实验变量(压力,温度,进料速率和进料组成),以识别可预测甲醇最大产量,CO2甲醇最大产量或CO或CH2最大转化率的条件。二氧化碳转化为甲醇。我们还进行了优化以确定最佳条件,以识别催化剂表面上的反应性中间体。最后,我们采取了第一步,将方法扩展到使用有限元配置的活塞流反应器(PFR)(由DAE系统描述)。将DAE转换为NLP。我们使用转换后的模型来考虑Cu上水煤气变换反应的最佳条件。

著录项

  • 作者

    Rubert-Nason, Patricia.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号