首页> 外文学位 >A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique.
【24h】

A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique.

机译:使用无损技术确定先进试验堆燃料的冷却时间和燃耗的可行性和优化研究。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this study presented is to determine the best available nondestructive technique necessary to collect validation data as well as to determine burnup and cooling time of the fuel elements on-site at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads to the full design of a permanent fuel scan system.;The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal, the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements nondestructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed were used to create burnup and cooling time calibration prediction curves for ATR fuel.;The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system.;Based on the ATR canal feasibility measurements and calibration results, it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however, in order to enhance the quality of the spectra collected using this scintillator, a deconvolution method was developed. Following the development of the deconvolution method for ATR applications, the technique was tested using one-isotope, multi-isotope, and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr 3 detector in an above the water configuration and deconvolution algorithms.
机译:提出本研究的目的是确定收集验证数据所需的最佳可用非破坏性技术,并确定高级测试反应堆(ATR)管道现场燃料元件的燃尽和冷却时间。这项研究提出了在ATR运河上实施永久性燃料扫描系统的可行性的建议,并导致了永久性燃料扫描系统的完整设计。这项研究首先包括确定是否可能以及需要哪些设备从靠近反应堆的运河的ATR燃料元件收集有用的光谱。一旦确定可以在ATR通道处获得有用的光谱,下一步就是确定哪种检测器和哪种配置更适合无损地预测燃料元件的燃尽和冷却时间。在研究过程中,使用了三种不同的高纯锗(HPGe),溴化镧(LaBr3)和高压氙(HPXe)检测器,它们分别位于水池上方和下方的两个系统中。收集和分析的数据用于创建ATR燃料的燃耗和冷却时间校准预测曲线。研究的下一步是确定所测试的三个探测器中的哪一个更适合永久系统。从获得的光谱和获得的校准曲线可以确定,尽管HPGe检测器产生了更好的结果,但仍需要一种能够更好地承受ATR运河恶劣环境的检测器。测量的原位性质需要坚固的燃料扫描系统,维护成本低并且易于控制。基于ATR通道的可行性测量和校准结果,可以确定LaBr3检测器是适用于运河的最佳替代产品。原位测量;但是,为了提高使用该闪烁器收集的光谱的质量,开发了一种反卷积方法。随着针对ATR应用的反卷积方法的发展,该技术已使用单同位素,多同位素和燃料模拟源进行了测试。使用卷积和反卷积数据进行燃耗校准。校准结果表明,通过解卷积可以改善该方法的燃耗预测。反卷积方法开发的最后阶段是进行辐照实验,以创建替代燃料源,以使用实验数据测试反卷积方法。燃料扫描系统的概念设计是在水面以上配置和解卷积算法中使用坚固的LaBr 3检测器实现的。

著录项

  • 作者

    Navarro, Jorge.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Nuclear.;Physics Radiation.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号