首页> 外文学位 >Reliable asymmetric phase stability computations using interval analysis.
【24h】

Reliable asymmetric phase stability computations using interval analysis.

机译:使用间隔分析进行可靠的不对称相位稳定性计算。

获取原文
获取原文并翻译 | 示例

摘要

The calculation of phase equilibrium is a fundamental and reoccurring problem in modeling of chemical engineering phenomena. A key step in the computation of multiphase equilibrium is phase stability analysis. A reliable technique for phase stability analysis will assure both that the correct number of phases is found, and that the phase split computed corresponds to a global minimum in the total Gibbs energy. That is, phase stability analysis serves as a global optimality test in solving the global optimization problem that determines phase equilibrium at constant temperature and pressure. However, phase stability analysis is itself a global optimization problem that can be very difficult to solve reliably. Stochastic global optimization methods (e.g., simulated annealing, genetic algorithms, etc.) have been frequently proposed in this context. However, none of these techniques is actually guaranteed to produce the correct results. Thus, there has been significant interest in the development of deterministic techniques that guarantee the correct solution of the phase stability problem. These efforts have been focused primarily on the case of symmetric models (same thermodynamic model used for all phases). Work on deterministic stability analysis for the asymmetric case (different models used for different phases) has been limited to cases involving either an ideal gas vapor phase or a pure solid phase. In this thesis, a deterministic method for the more general asymmetric case will be presented, focusing on the common situation in modeling vapor-liquid equilibrium in which nonidealities are represented in the vapor phase by an equation of state and in the liquid phase by an excess Gibbs energy model.; In comparison to the symmetric model case, the use of multiple thermodynamic models in the asymmetric case adds an additional layer of complexity to the phase stability problem. To deal with this additional complexity the phase stability problem is formulated in terms of a new type of tangent plane distance function, which uses a binary variable to account for the presence of different liquid- and vapor-phase models. To then solve the problem deterministically, an interval-Newton approach is used.; The new methodology is tested using several examples with NRTL as the liquid-phase model and a cubic equation of state as the vapor-phase model. In three cases, published phase equilibrium computations were found to be incorrect (not stable). Procedures for deterministic phase stability analysis, such as described here, can be used in connection with any algorithm or software package for computing phase equilibrium, to validate the computed results and to provide corrective feedback if needed.
机译:相平衡的计算是化学工程现象建模中的一个基本且反复出现的问题。相平衡分析是计算多相平衡的关键步骤。一种可靠的相位稳定性分析技术将确保既找到正确的相数,又确保计算出的相分离对应于总Gibbs能量的全局最小值。即,相稳定性分析用作解决确定在恒定温度和压力下的相平衡的全局优化问题的全局最优性测试。但是,相稳定性分析本身就是一个全局优化问题,可能很难可靠地解决。在这种情况下,经常提出随机全局优化方法(例如,模拟退火,遗传算法等)。但是,这些技术实际上都不能保证产生正确的结果。因此,人们对确定性技术的发展产生了极大的兴趣,这些技术可以保证相位稳定性问题的正确解决。这些努力主要集中在对称模型的情况下(所有相都使用相同的热力学模型)。对于非对称情况(用于不同相的不同模型)的确定性稳定性分析的工作仅限于涉及理想气相或纯固相的情况。在本文中,将提出一种确定性方法,用于更一般的不对称情况,着重于建模气液平衡的普遍情况,在这种情况下,汽相中的非理想状态用状态方程表示,而液相中的非理想状态则用过量表示。吉布斯能量模型。与对称模型相比,在非对称情况下使用多个热力学模型会给相稳定性问题增加一层额外的复杂性。为了解决这种额外的复杂性,根据新型切线平面距离函数来表达相稳定性问题,该函数使用二进制变量来说明存在不同的液相和气相模型。为了确定性地解决该问题,使用了间隔牛顿法。使用NRTL作为液相模型并以立方状态方程作为气相模型的几个示例对新方法进行了测试。在三种情况下,发现已发布的相平衡计算不正确(不稳定)。诸如此处所述的确定性相稳定性分析程序可与用于计算相平衡的任何算法或软件包结合使用,以验证计算结果并在需要时提供校正反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号