首页> 外文学位 >High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy.
【24h】

High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy.

机译:使用扫描超导量子干涉仪(SQUID)显微镜对磁场进行高分辨率成像。

获取原文
获取原文并翻译 | 示例

摘要

Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
机译:具有可互换传感器配置的扫描超导量子干涉设备(SQUID)显微镜系统的开发,用于以亚毫米分辨率成像室温(RT)样品的磁场。低临界温度(Tc)铌基单片SQUID传感器安装在蓝宝石棒的尖端,并热锚定在低温恒温器氦气储罐中。 25毫米的蓝宝石窗口将真空空间与RT样品隔开。定位机制允许调整杜瓦瓶顶部与样品之间的距离。我已经实现了100毫米的传感器到样本的间距,可以保持长达4周的时间。对于给定的磁源,需要不同的SQUID传感器配置以实现空间分辨率和场灵敏度的最佳组合。为了对地质样品的薄片进行成像,我使用了定制设计的单片低Tc铌裸SQUID传感器,有效直径为80微米,场灵敏度为1.5 pT / Hz1 / 2,磁矩灵敏度为5.4对于100 Hz以上的频率,在白噪声区域中传感器到样品的间距为100毫米时,将x 10-18 Am2 / Hz1 / 2。心脏组织中的成像动作电流需要更高的场灵敏度,这只能通过牺牲空间分辨率来实现。我开发了单片式低Tc铌多回路SQUID传感器,传感器尺寸从250微米到1毫米不等,在100 Hz以上的频率下,白噪声区域的灵敏度分别为480-180 fT / Hz1 / 2。对于所有传感器配置,空间分辨率都可以与有效直径相媲美,并受传感器到样品的间距的限制。空间配准使我们能够比较与动作电流和跨膜电位的光学记录相关的磁场的高分辨率图像,以研究心脏组织的双畴性质或将岩相学与地质样品薄片中的磁场图匹配。

著录项

  • 作者

    Fong de los Santos, Luis E.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Physics Optics.; Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;电磁学、电动力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号