首页> 外文学位 >Investigations of Induced Charge Electrokinetic Phenomena.
【24h】

Investigations of Induced Charge Electrokinetic Phenomena.

机译:感应电荷电动现象的研究。

获取原文
获取原文并翻译 | 示例

摘要

Recent developments in microfluidics have highlighted the importance of efficiently transporting fluids at the micron scale. This has lead to a resurgence of interest in utilizing electrokinetic phenomena, which scale favorably with the small channel dimensions encountered in microfluidics, to drive fluid flows.;This dissertation focuses on induced charge electro-osmosis (ICEO), a nonlinear electrokinetic effect in which an applied electric field both induces and drives a layer of charged fluid near an electrically conductive surface. ICEO has been shown to produce time-averaged flows with AC electric fields and may provide an on-chip means of generating high pressure flows with low applied voltages. Experimental studies of ICEO have shown that standard theories generally overpredict the observed slip velocity, frequently by orders of magnitude.;This discrepancy could be explained by the presence of a thin coating of an adventitious dielectric over the conductive surface. In this work, I develop a modified theory of ICEO that incorporates the effects of a dielectric coating and its surface chemistry, both of which act to decrease the slip velocity relative to a clean metal. This theory shows that a layer of dielectric contaminant of only nanometer thickness can lead to significantly suppressed ICEO flows.;In order to test this theory, I developed a novel experimental apparatus, the details of which are presented herein, that allows for the observation of ICEO flows over planar surfaces coated with dielectrics of controlled physical properties. Data for over 8000 combinations of parameters over both an oxide dielectric and alkanethiol self-assembled monolayer show unprecedented quantitative agreement with this modified theory.;The goal for engineering practical microfluidic devices is to generate the fastest flows possible for a given set of conditions. I end the dissertation with a discussion of how to generate flows that are orders of magnitude faster than those over a solid surface by using thin liquid films. This result follows from the fact that the electrical stress in the electrolyte drives the electrolyte/thin film interface itself into motion.
机译:微流体学的最新发展突显了以微米规模有效输送流体的重要性。这引起了人们对利用电动现象的兴趣再次兴起,电动现象随微流体中遇到的小通道尺寸成比例地增加以驱动流体流动。本论文的重点是感应电荷电渗(ICEO),一种非线性电动效应,其中施加的电场既会感应并驱动导电表面附近的带电流体层。已经显示出ICEO可以产生带有交流电场的时间平均流,并且可以提供一种芯片上的方式来产生具有低施加电压的高压流。 ICEO的实验研究表明,标准理论通常会过高地预测观察到的滑移速度,通常会高出几个数量级。这种差异可以用导电表面上存在一层不定形电介质的薄涂层来解释。在这项工作中,我开发了ICEO的修改后的理论,该理论结合了介电涂层及其表面化学的作用,两者均可以降低相对于干净金属的滑动速度。该理论表明,只有纳米厚度的电介质污染物层会导致ICEO流动受到显着抑制。为了测试该理论,我开发了一种新型实验设备,其详细信息在此处提供,可以观察到ICEO在覆盖有受控物理特性电介质的平面上流动。氧化物介电层和烷硫醇自组装单层上超过8000个参数组合的数据表明,采用这种改进的理论具有前所未有的定量协议。工程实用的微流控设备的目标是在给定条件下产生最快的流量。在本文的结尾,我讨论了如何通过使用液体薄膜产生比固体表面上的流动快几个数量级的流动。该结果来自以下事实:电解质中的电应力驱动电解质/薄膜界面本身运动。

著录项

  • 作者

    Pascall, Andrew James.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Chemical.;Physics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号