首页> 外文学位 >Fast Scanning Electrical Mobility Spectrometry: Theory, Experiments, and Inversion Methodologies.
【24h】

Fast Scanning Electrical Mobility Spectrometry: Theory, Experiments, and Inversion Methodologies.

机译:快速扫描电迁移谱:理论,实验和反演方法。

获取原文
获取原文并翻译 | 示例

摘要

Ultrafine particles (diameter less than 100 nm) play a critical role in determining local air quality and from a human health perspective (Oberdorster et al. 2004, 2005). The environmental/health effects of these particles are often associated with their surface area, and, hence, measurements of particle number concentrations are the most appropriate to characterize the impact of these particles on their environment. The entire range of ultrafine particles, from ~ 2 nm to 100 nm, can be characterized in several minutes with available techniques. These measurement times may, however, be too slow when conditions of fast particle dynamics affect particle populations. The objective of this work is to develop instruments and methodologies for near real-time particle size distribution measurements of ultrafine particles. For the particle size distribution measurements of these particles, the proposed work aims to build on the past developments of the DMA (Differential Mobility Analyzer; Knutson and Whitby, 1975) because of the accuracy of these instruments and their use for downstream processing measurements with a tandem-DMA setup. The DMAs, however, have a slow time response, making them only useful in applications where a relatively long measurement time is acceptable. A key constraint in the deployment of DMAs for faster measurements is the lack of knowledge of their classification capability, or transfer function, under fast scanning. Also, the quality of particle size distributions calculated under fast-scan operation will be strongly affected by the low signal-to-noise ratio that results from such operation and the ill-conditioning of the Kernel function because of the degradation of transfer function resolution.;As part of this thesis, a new approach to determine scanning DMA transfer functions is introduced. The trajectory-based approach of Dubey and Dhaniyala (2008) is used in combination with Monte Carlo simulations to determine mobility-based transfer functions of diffusional particles in scanning DMAs. With the knowledge of the ATF (Arrival time transfer function) area and the resolution, near real-time calculation of the instrument transfer function is possible. Estimation of particle size distributions from SEMS measurements, particularly under fast scan operation, will require the solution of the discretized form of the Fredholm integral equation of the first kind, requiring inversion of a kernel function. A new Multiscale Expectation-Maximization approach for SEMS particle size distribution calculation is introduced here. This approach is seen to provide a robust solution for a range of test particle size distributions (narrow or smooth) and is recommended for use with SEMS measurements when the solution characteristics are unknown.;To address the practical aspect of fast particle size distribution measurements, a new High-flow Dual Channel Differential mobility analyzer is designed, fabricated, and calibrated. The HD-DMA has a classifier section with a large radius that permits the operation of the instrument at high flow rates, while maintaining low Reynolds number in the classifier section. In order to cover a broad size range, the HD-DMA is designed with two sample ports. The upper port is used to sample particles in the size range of 2-80 nm and the lower port can sample particles in a size range of 5 to 200nm, for a large sample flow rate of 15 LPM. Preliminary measurements suggest that the combination of the HD-DMA, the new scanning DMA transfer functions, and the use of appropriate inversion algorithms, permits very fast particle size distribution measurements in ~ 5s.
机译:从人类健康的角度来看,超细颗粒(直径小于100 nm)在确定当地空气质量方面起着至关重要的作用(Obe​​rdorster等人,2004,2005)。这些颗粒的环境/健康影响通常与它们的表面积有关,因此,颗粒数浓度的测量最适合表征这些颗粒对其环境的影响。使用现有技术,可以在几分钟内对从〜2 nm到100 nm的整个超细颗粒范围进行表征。但是,当快速粒子动力学的条件影响粒子数量时,这些测量时间可能太慢。这项工作的目的是开发用于超细颗粒近实时粒度分布测量的仪器和方法。对于这些颗粒的粒径分布测量,由于这些仪器的准确性及其在下游处理测量中的应用,建议的工作旨在基于DMA(差动分析仪; Knutson和Whitby,1975)的过去发展。串联DMA设置。但是,DMA具有较慢的时间响应,因此仅在可接受较长测量时间的应用中有用。为快速测量而部署DMA的一个关键约束是缺乏对它们在快速扫描下的分类能力或传递函数的了解。同样,由于传递函数分辨率的降低,快速扫描操作下计算出的粒度分布的质量将受到这种操作产生的低信噪比以及内核函数的不良条件的强烈影响。 ;作为本文的一部分,介绍了一种确定扫描DMA传输函数的新方法。 Dubey和Dhaniyala(2008)基于轨迹的方法与蒙特卡洛模拟结合使用,以确定扫描DMA中扩散粒子的基于迁移率的传递函数。有了ATF(到达时间传递函数)区域和分辨率的知识,就可以对仪器传递函数进行近乎实时的计算。根据SEMS测量来估计粒度分布,尤其是在快速扫描操作下,将需要求解第一类Fredholm积分方程的离散形式,需要对核函数进行求逆。这里介绍了一种用于SEMS粒度分布计算的新的多尺度期望最大化方法。可以看出,这种方法为各种测试粒度分布(窄或平滑)提供了一种可靠的解决方案,建议在溶液特性未知时与SEMS测量一起使用。为了解决快速粒度分布测量的实际问题,设计,制造和校准了新的高流量双通道差分迁移率分析仪。 HD-DMA具有半径较大的分级器部分,该部分允许仪器在高流速下操作,同时在分级器部分中保持较低的雷诺数。为了覆盖更大的尺寸范围,HD-DMA设计有两个采样端口。上端口用于采样2-80 nm范围内的颗粒,下端口可以采样5至200nm范围内的颗粒,以获得15 LPM的大样品流量。初步测量表明,HD-DMA,新的扫描DMA传递函数以及适当的反演算法的结合使用,可以在约5s内非常快速地进行粒径分布测量。

著录项

  • 作者

    Dubey, Praney.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号