首页> 外文学位 >The effects of geometry and length scale on nanomechanical properties in constrained systems.
【24h】

The effects of geometry and length scale on nanomechanical properties in constrained systems.

机译:几何形状和长度尺度对约束系统中纳米力学性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The determination of mechanical properties in nanoscale geometries is becoming increasingly important as microsystem and integrated circuit technologies continue to mature. Many devices produced by these technologies are composed of materials with critical sample dimensions smaller than 100 nm. In microelectronics, this can be the thickness of a metallization or dielectric layer, while wear coatings on MEMS devices are frequently thinner than this length scale. Since structures of this type are susceptible to plasticity and fracture as a result of either contact or residual stresses, it is critical that the mechanical behavior of the individual components be well described.; This thesis is directed at the development of methods for characterizing the mechanical properties in small volume systems. Using instrumented indentation techniques, typically called nanoindentation, a systematic study of the mechanical response of materials ranging from ductile metals to brittle ceramics was executed. More specifically, investigations into how single length scale approaches may be used to describe mechanical properties such as indentation hardening, ductile film delamination and strain energy release rates were performed. In addition, the acoustic energy released during the fracture of brittle ceramics was related to both stress intensity and a strain energy release rate. Finite element simulations of nanoindentation tests were performed using ABAQUS, a commercially available material modeling software program. These simulations were used to separate individual film and substrate responses from the experimentally observed film/substrate composite mechanical behavior. Finally, quasi-tribological experiments were performed to probe for transitions in friction or wear response as the local deformation varied from the nanoscale to the macroscale.
机译:随着微系统和集成电路技术的不断成熟,确定纳米级几何形状的机械性能变得越来越重要。这些技术生产的许多设备都是由关键样品尺寸小于100 nm的材料组成的。在微电子学中,这可以是金属化或介电层的厚度,而MEMS器件上的耐磨涂层通常比该长度尺度更薄。由于这种类型的结构易受接触应力或残余应力的影响而产生塑性和断裂,因此至关重要的是,必须很好地描述各个部件的机械性能。本论文旨在开发表征小体积系统机械性能的方法。使用通常被称为纳米压痕的仪器压痕技术,对从韧性金属到脆性陶瓷等材料的机械响应进行了系统的研究。更具体地,进行了关于如何使用单一长度尺度方法来描述机械性能的研究,所述机械性能例如压痕硬化,韧性膜分层和应变能释放速率。此外,脆性陶瓷断裂过程中释放的声能与应力强度和应变能释放率有关。纳米压痕测试的有限元模拟是使用ABAQUS(一种可商购的材料建模软件程序)进行的。这些模拟用于从实验观察到的膜/基底复合材料机械性能中分离出各个膜和基底的响应。最后,进行了准摩擦学实验,以探究局部变形从纳米尺度到宏观尺度变化时摩擦或磨损响应的转变。

著录项

  • 作者

    Jungk, John Michael.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号