首页> 外文学位 >Alternative approaches to maximum likelihood estimation of the spatial random effects model.
【24h】

Alternative approaches to maximum likelihood estimation of the spatial random effects model.

机译:空间随机效应模型的最大似然估计的替代方法。

获取原文
获取原文并翻译 | 示例

摘要

Obtaining spatial predictions by kriging is a common approach in geostatistics. This is usually accomplished by assuming a Gaussian random field (GRF), estimating covariance parameters by maximum likelihood estimation, and using the kriging equation to obtain predictions. For massive data sets, kriging becomes computationally intensive, both in terms of CPU time and memory, and this burden is even more restrictive for multivariate data. Cressie and Johannesson (2008) proposed fixed rank kriging as a solution, with maximum likelihood estimation of the covariance parameters later addressed by Katzfuss and Cressie (2011b). The disadvantage to this method is that accuracy in prediction is bounded by the predetermined fixed components of the model. We propose two methods that utilize the Spatial Random Effects (SRE) model of Cressie and Johannesson (2008), but allow for estimation of the fixed components. In the first method called Reduced Basis Kriging, we use restricted maximum likelihood estimation and sparse matrix methodology to obtain additional gains in computational efficiency without loss of accuracy in prediction. Reduced Basis Kriging does require additional model assumptions, therefore the alternating expectation conditional maximization (AECM) algorithm is suggested as a second method which maintains a very flexible covariance structure and provides estimation of the fixed components. These methods are then extended to handle multivariate data for either a large sample size or a large number of response variables. Unlike previous methods of efficient cokriging, this methodology does not require that observations are recorded at the same locations. Experiments show that our methodology can provide a consistent improvement in accuracy while minimizing the additional computational burden of extra parameter estimation. The methodology is extended to climate data archived by the National Climate Data Center.
机译:通过克里金法获得空间预测是地统计学中的一种常用方法。这通常是通过假设高斯随机场(GRF),通过最大似然估计来估计协方差参数以及使用克里金方程式来获得预测来实现的。对于海量数据集,克里金法在CPU时间和内存方面都占用大量计算资源,并且这种负担对多变量数据的限制更大。 Cressie和Johannesson(2008)提出了固定秩克里金法作为解决方案,协方差参数的最大似然估计随后由Katzfuss和Cressie(2011b)解决。该方法的缺点是预测的准确性受到模型的预定固定分量的限制。我们提出了两种利用Cressie和Johannesson(2008)的空间随机效应(SRE)模型的方法,但可以估算固定分量。在第一种称为“减少的基础克里金法”的方法中,我们使用受限的最大似然估计和稀疏矩阵方法来获得额外的计算效率增益,而又不会损失预测的准确性。减少的基础克里格确实需要额外的模型假设,因此建议将交替期望条件最大化(AECM)算法作为第二种方法,该算法保持非常灵活的协方差结构并提供固定分量的估计。然后将这些方法扩展为处理大样本量或大量响应变量的多元数据。与以前的有效cokriging方法不同,此方法不需要在相同位置记录观测值。实验表明,我们的方法可以在最小化额外参数估计的额外计算负担的同时,不断提高准确性。该方法扩展到由国家气候数据中心存档的气候数据。

著录项

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号