首页> 外文学位 >Observed and modeled relationships among surface temperature, cloud properties, and longwave radiation over the Arctic Ocean.
【24h】

Observed and modeled relationships among surface temperature, cloud properties, and longwave radiation over the Arctic Ocean.

机译:观测和建模的北冰洋表面温度,云特性和长波辐射之间的关系。

获取原文
获取原文并翻译 | 示例

摘要

Arctic surface temperature is evaluated using satellite retrievals from the TIROS Operational Vertical Sounder (TOVS) and surface-based observational products. In general, winter retrievals are consistent with surface-based measurements. In summer, there is a cold bias of approximately 2K in the TOVS data over sea ice owing to uncertainties in detecting stratus clouds. TOVS satellite retrievals and surface observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) field campaign are then used to evaluate the performance of a global climate model (GCM). In addition to the traditional approach of validating individual model variables with observed fields, the model's relationships and sensitivities among interrelated fields are examined by a linear regression method. This provides additional information on how well the model represents feedbacks. Three climate variables are considered: surface temperature (Ts), total cloud cover (CLD), and downward longwave flux (DLF). The GCM provides a reasonable representation of both the annual cycles and the variability of these climate variables. There is also good agreement between the modeled and observed relationships between pairs of climate variables. A neural network (NN) approach is applied to investigate and quantify non-linear relationships between longwave cloud forcing (CFL) and cloud properties. A distinct bimodal distribution of sensitivities characterizes the relationships between pairs of variables be tween CFL and other cloud properties. Although the mean states of the relationships agree well with a previous study, the mean states often do not exist. For example, the mean sensitivity of CFL to cloud cover is 0.68Wm -2%-1, but in reality it is dominated by a low sensitivity of 0.15Wm-2% -1 for clear-sky conditions, and a high one of 0.85W m-2%-1 for cloudy conditions. The sensitivity of CFL to liquid water path and to cloud-base height decreases as these two variables increase. The sensitivity to cloud fraction increases as cloud cover increases. The sensitivity to cloud-base temperature is low for very cold or very warm clouds. The neural network approach captures the sensitivities of longwave cloud forcing to cloud properties, and provides a new way to evaluate quantitatively the relationships in climate feedbacks and to identify different modes of variability.
机译:使用TIROS操作垂直测深仪(TOVS)和基于地面的观测产品进行卫星检索来评估北极表面温度。通常,冬季取暖与基于地面的测量是一致的。夏季,由于检测层云的不确定性,TOVS数据在海冰上存在大约2K的冷偏差。然后,利用北冰洋表面热预算(SHEBA)野战活动中的TOVS卫星检索和表面观测来评估全球气候模型(GCM)的性能。除了使用观察场验证单个模型变量的传统方法外,还通过线性回归方法检查了相关字段之间模型的关系和敏感性。这提供了有关模型如何很好地表示反馈的其他信息。考虑了三个气候变量:地表温度(Ts),总云量(CLD)和向下长波通量(DLF)。 GCM提供了这些气候变量的年度周期和变异性的合理表示。在成对的气候变量之间的模拟关系和观测关系之间也有很好的一致性。神经网络(NN)方法用于调查和量化长波云强迫(CFL)与云特性之间的非线性关系。灵敏度的独特双峰分布描述了介于CFL和其他云特性之间的变量对之间的关​​系。尽管这些关系的平均状态与先前的研究非常吻合,但是平均状态通常不存在。例如,CFL对云层的平均灵敏度为0.68Wm -2%-1,但实际上,在晴朗的天空条件下,其灵敏度较低,为0.15Wm-2%-1,而较高的灵敏度为0.85 W m-2%-1(多云)。随着这两个变量的增加,CFL对液态水路径和云基高度的敏感性降低。随着云量的增加,对云量分数的敏感性也会增加。对于极冷或极暖的云,云基温度的敏感性较低。神经网络方法捕获了长波云强迫对云特性的敏感性,并提供了一种新的方法来定量评估气候反馈中的关系并确定不同的变化模式。

著录项

  • 作者

    Chen, Yonghua.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Physical Oceanography.; Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋物理学;大气科学(气象学);
  • 关键词

  • 入库时间 2022-08-17 11:41:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号