首页> 外文学位 >Neural and biomechanical mechanisms underlying the generation of feeding responses of different amplitude by the multifunctional feeding apparatus of Aplysia californica.
【24h】

Neural and biomechanical mechanisms underlying the generation of feeding responses of different amplitude by the multifunctional feeding apparatus of Aplysia californica.

机译:神经性和生物力学机制,是由加州海ly多功能饲喂装置产生不同幅度的饲喂反应的基础。

获取原文
获取原文并翻译 | 示例

摘要

How do biomechanics interact with neural control to generate responses of different intensity? In order to study this question, two mutually exclusive feeding responses, swallowing and rejection, were studied in the marine mollusk Aplysia californica.; The kinematics of the food stimulus, a polyethylene tube, was characterized during swallowing and rejection responses. During small amplitude Type A swallows, the tube translated inwards. During large amplitude Type B swallows, the tube translated inwards more strongly and rotated. During small amplitude Type A rejections, the tube translated outward. During large amplitude Type B rejections, the tube translated outwards more strongly and rotated.; The neural and biomechanical mechanisms underlying different amplitude responses were studied. Type A swallows began with a weak protraction. During retraction, jaw muscle contraction pushed the closed radula back and translated the tube inward. Type B swallows began with a more intense protraction, which set up the radula/odontophore to be a retractor. Strong protraction also stretched the hinge muscle. Thus both the radula closer muscle (I4) and the hinge muscle acted to increase swallowing amplitude. Two identified buccal ganglion motor neurons, B8 and B7, contributed to these movements, respectively. Their functions changed with the biomechanical context. The retractor muscle I1/I3 reinforced jaw closure at the peak of protraction as food was grasped.; During rejection, as the radula closed at the onset of protraction, it elongated and stretched the protractor muscle (I2), therefore increasing I2's ability to exert force. Both shape change and greater I2 contraction were necessary for the expression of the larger amplitude Type B rejections. Identified multiaction interneurons B4 and B5 are partially responsible for delaying the activation of the I1/I3 muscle, so that radula opening was not opposed by activation of the retractor muscles at peak protraction.; These results suggest a multifunctional usage of the buccal muscles and motor neurons in generating different amplitude feeding responses. Several biomechanics-based neural criteria were provided for future studies of the interneuronal mechanisms underlying intensity change.
机译:生物力学如何与神经控制相互作用以产生不同强度的反应?为了研究这个问题,在海洋软体动物鸭Ap中研究了两种相互排斥的摄食反应:吞咽和排斥。在吞咽和排斥反应期间,对食物刺激(聚乙烯管)的运动学进行了表征。在小振幅A型吞咽期间,试管向内平移。在大振幅的B型吞咽过程中,试管向内平移并旋转得更厉害。在小幅度A型抑制中,管向外平移。在大振幅B型剔除期间,试管更强烈地向外平移并旋转。研究了不同幅度响应的神经和生物力学机制。 A型燕子开始时虚弱无力。在回缩过程中,颌骨肌肉收缩将闭合的小弓推回并向内平移导管。 B型燕子开始时会有更强烈的伸出力,这使the /齿状突牙成为牵开器。强烈的伸直也拉长了铰链肌肉。因此,小弓闭合肌(I4)和铰链肌都起着增加吞咽幅度的作用。两个确定的颊神经节运动神经元B8和B7分别促成了这些运动。它们的功能随生物力学环境而变化。牵开肌I1 / I3在抓握食物时在伸手高峰时加强颌骨闭合。在排斥过程中,由于小弓在牵伸开始时闭合,它拉长并拉伸了量角肌(I2),因此增加了I2施加力的能力。形状变化和更大的I2收缩对于表达更大振幅的B型排斥都必不可少。鉴定出的多作用中间神经元B4和B5部分负责延迟I1 / I3肌肉的激活,因此在峰值伸直时骨的张开不会与牵开器肌肉的激活相反。这些结果表明颊肌和运动神经元在产生不同幅度的进食反应中的多功能用途。提供了几种基于生物力学的神经标准,以用于强度变化背后的神经元间机制的进一步研究。

著录项

  • 作者

    Ye, Hui.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Biology Neuroscience.; Engineering Biomedical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物医学工程;生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:41:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号