首页> 外文学位 >Advanced coronary CT angiography image processing techniques.
【24h】

Advanced coronary CT angiography image processing techniques.

机译:先进的冠状动脉CT血管造影图像处理技术。

获取原文
获取原文并翻译 | 示例

摘要

Computer-aided cardiac image analysis obtained by various modalities plays an important role in the early diagnosis and treatment of cardiovascular disease. Numerous computerized methods have been developed to tackle this problem. Recent studies employ sophisticated techniques using available cues from cardiac anatomy such as geometry, visual appearance, and prior knowledge. Especially, visual analysis of three-dimensional (3D) coronary computed tomography angiography (CCTA) remains challenging due to large number of image slices and tortuous character of the vessels. In this thesis, we focus on cardiac applications associated with coronary artery disease and cardiac arrhythmias, and study the related computer-aided diagnosis problems from computed tomography angiography (CCTA). First, in Chapter 2, we provide an overview of cardiac segmentation techniques in all kinds of cardiac image modalites, with the goal of providing useful advice and references. In addition, we describe important clinical applications, imaging modalities, and validation methods used for cardiac segmentation.;In Chapter 3, we propose a robust, automated algorithm for unsupervised computer detection of coronary artery lesions from CCTA. Our knowledge-based algorithm consists of centerline extraction, vessel classification, vessel linearization, lumen segmentation with scan-specific lumen attenuation ranges, and lesion location detection. Presence and location of lesions are identified using a multi-pass algorithm which considers expected or "normal" vessel tapering and luminal stenosis from the segmented vessel. Expected luminal diameter is derived from the scan by automated piecewise least squares line fitting over proximal and mid segments (67%) of the coronary artery considering the locations of the small branches attached to the main coronary arteries. We applied this algorithm to 42 CCTA patient datasets, acquired with dual-source CT, where 21 datasets had 45 lesions with stenosis 25%. The reference standard was provided by visual and quantitative identification of lesions with any stenosis ≥25% by 3 expert observers using consensus reading. Our algorithm identified 43 lesions (93%) confirmed by the expert observers. There were 46 additional lesions detected; 23 out of 46 (50%) of these were less- stenosed lesions. When the artery was divided into 15 coronary segments according to standard cardiology reporting guidelines, per-segment basis, sensitivity was 93% and per-segment specificity was 81%. Our algorithm shows promising results in the detection of obstructive and nonobstructive CCTA lesions.;In Chapter 4, we propose a novel low-radiation dose CCTA denoising algorithm. Our aim in this study was to optimize and validate an adaptive de-noising algorithm based on Block-Matching 3D, for reducing image noise and improving left ventricular assessment, in low-radiation dose CCTA. In this study, we describe the denoising algorithm and its validation, with low-radiation dose coronary CTA datasets from consecutive 7 patients. We validated the algorithm using a novel method, with the myocardial mass from the low-noise cardiac phase as a reference standard, and objective measurement of image noise. After denoising, the myocardial mass was not statistically different by comparison of individual data points by the students' t-test (130.9+/-31.3g in low-noise 70% phase vs 142.1+/-48.8g in the denoised 40% phase, p= 0.23). Image noise improved significantly between the 40% phase and the denoised 40% phase by the students' t-test, both in the blood pool (p-value <0.0001) and myocardium (p-value <0.0001). We optimized and validated an adaptive BM3D denoising algorithm for coronary CTA. This new method reduces image noise and has the potential for improving myocardial function assessment from low-dose coronary CTA.;In Chapter 5, we propose a novel machine learning technique to detect coronary arterial lesions with stenosis ≥25% from CCTA. We proposed an improved automated algorithm for detection of coronary arterial lesions from coronary CT angiography, by adapting a machine learning algorithm on the same data used in Chapter 3, which was described based on [139]. Our structured learning-based algorithm consists of two stages: (1) Dividing each coronary artery into small volume patches, and integrating several quantitative geometric and shape features for coronary arterial lesions in each small volume patch by Support Vector Machine (SVM) algorithm, (2) Applying SVM-based decision fusion algorithm to combine a formula-based analytic method and a learning-based method in the stage (1). We applied this algorithm to 42 CCTA patient datasets, acquired with dual-source CT, where 21 datasets had 45 lesions with stenosis ≥25%. The reference standard was provided by visual and quantitative identification of lesions with any stenosis ≥25% by three expert readers using consensus reading. When the artery was divided into 15 coronary segments according to standard cardiology reporting guidelines, per-segment basis, the sensitivity was 93%, and the specificity was 95% using 10-fold cross-validation. In conclusions, we developed a novel machine learning based algorithm for detection of coronary arterial lesions from CCTA. The proposed structured learning algorithm performed with high sensitivity and high specificity as compared to 3 experienced expert readers.
机译:通过各种方式获得的计算机辅助心脏图像分析在心血管疾病的早期诊断和治疗中起着重要作用。已经开发出多种计算机化方法来解决该问题。最近的研究采用了复杂的技术,利用了来自心脏解剖结构的可用线索,例如几何形状,视觉外观和先验知识。特别地,由于大量的图像切片和血管的弯曲特性,对三维(3D)冠状动脉计算机断层扫描血管造影(CCTA)的视觉分析仍然具有挑战性。在本文中,我们重点研究与冠状动脉疾病和心律不齐相关的心脏应用,并研究计算机断层扫描血管造影(CCTA)相关的计算机辅助诊断问题。首先,在第二章中,我们概述了各种心脏图像模态中的心脏分割技术,目的是提供有用的建议和参考。此外,我们描述了用于心脏分割的重要临床应用,成像方式和验证方法。在第3章中,我们提出了一种强大的,自动化的算法,用于从CCTA进行无监督计算机检测冠状动脉病变。我们基于知识的算法包括中心线提取,血管分类,血管线性化,具有扫描特定管腔衰减范围的管腔分割以及病变位置检测。病变的存在和位置是使用多程算法确定的,该算法考虑了预期的或“正常的”血管逐渐变细以及来自分割血管的管腔狭窄。考虑到附着在主要冠状动脉上的小分支的位置,可通过自动分段分段最小二乘法拟合冠状动脉近端和中段(67%)来获得预期的管腔直径。我们将该算法应用于通过双源CT采集的42个CCTA患者数据集,其中21个数据集具有45个病变,狭窄率为25%。由3位专家观察员使用共识读数通过视觉和定量鉴定狭窄度≥25%的病变提供参考标准。我们的算法确定了由专业观察员确认的43个病变(93%)。还发现了另外46个病灶。其中46个中有23个(50%)是狭窄程度较小的病变。当根据标准心脏病报告指南将动脉分为15个冠状动脉段时,每段基础的敏感性为93%,每段特异性为81%。我们的算法在阻塞性和非阻塞性CCTA病变的检测中显示出有希望的结果。在第四章​​中,我们提出了一种新颖的低辐射剂量CCTA去噪算法。我们在这项研究中的目的是优化和验证一种基于块匹配3D的自适应降噪算法,以在低辐射剂量CCTA中减少图像噪声并改善左心室评估。在这项研究中,我们使用来自连续7例患者的低辐射剂量冠状动脉CTA数据集描述了降噪算法及其验证。我们使用一种新颖的方法验证了该算法,并以低噪声心动相的心肌质量为参考标准,并对图像噪声进行了客观测量。去噪后,通过学生t检验比较单个数据点,心肌质量在统计学上没有差异(低噪声70%相为130.9 +/- 31.3g,而去噪40%相为142.1 +/- 48.8g ,p = 0.23)。通过学生的t检验,在血池(p值<0.0001)和心肌(p值<0.0001)中,图像噪声在40%相和去噪40%相之间都得到了显着改善。我们优化和验证了自适应BM3D降噪算法,用于冠状动脉CTA。该新方法可降低图像噪声,并有可能从低剂量冠状动脉CTA评估心肌功能。在第五章中,我们提出了一种新颖的机器学习技术,可从CCTA中检测狭窄度≥25%的冠状动脉病变。我们提出了一种改进的自动算法,通过对第3章中使用的相同数据改编机器学习算法,从而从冠状动脉CT血管造影术中检测冠状动脉病变,该算法基于[139]进行了描述。我们的基于学习的结构化学习算法包括两个阶段:(1)通过支持向量机(SVM)算法将每个冠状动脉分成小体积斑块,并在每个小体积斑块中整合冠状动脉病变的多个定量几何和形状特征, 2)在阶段(1)中,应用基于支持向量机的决策融合算法,将基于公式的解析方法与基于学习的方法相结合。我们将此算法应用于通过双源CT采集的42个CCTA患者数据集,其中21个数据集有45个狭窄度≥25%的病变。由三位专家读者使用共识读数通过视觉和定量识别狭窄程度≥25%的病变提供参考标准。根据标准心脏病学报告指南将动脉分为15个冠状动脉节段(按段划分),使用10倍交叉验证后,敏感性为93%,特异性为95%。总之,我们开发了一种基于机器学习的新颖算法,用于从CCTA中检测冠状动脉病变。与3位经验丰富的专家读者相比,本文提出的结构化学习算法具有很高的灵敏度和特异性。

著录项

  • 作者

    Kang, Dongwoo.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号