首页> 外文学位 >Understanding the influence of the electrode material on microbial fuel cell performance.
【24h】

Understanding the influence of the electrode material on microbial fuel cell performance.

机译:了解电极材料对微生物燃料电池性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, I deploy sets of electrodes into microbial fuel cells (MFC), characterize their performance, and evaluate the influence of both platinum catalysts and carbon-based electrodes on current production. The platinum work centers on improving current production by optimizing the use of the catalyst using nano-fabrication techniques. The carbon-electrode work seeks to determine the influence of the bare electrode on biofilm-anode current production.;The development of electrodes for MFCs has boomed over the past decade, however, experiments aimed at identifying how catalyst deposition methods and electrode properties influence current production have been limited. The research conducted here is an attempt to expand this knowledge base for platinum catalysts and carbon electrodes. In the initial chapters (4 and 5), I discuss our attempt to decrease catalyst loadings while increasing current production through the use of platinum nanoparticles. The results demonstrate that incorporating platinum nanoparticles throughout the anode and cathode is an efficient means of increasing MFC current production relative to surface deposition because it increases catalyst surface area.;The later chapters (chapters 6 and 7) develop an understanding of the importance of electrode properties (i.e. surface area, activation resistance, conductivity, surface morphology) by electrochemically evaluating well-studied anode-respiring pure cultures on different carbon electrode architectures. Two different architectures are produced by using tubular and platelet shaped constituent materials (i.e. carbon fibers and graphene nanoplatelets) and the morphologies of the electrodes are varied by altering the size of the constituent material.;The electrodes are characterized and evaluated in MFCs using either Shewanella oneidensis MR-1 or Geobacter sulfurreducens as the innoculant because their bioelectrochemical physiologies are the most documented in the literature. Using the electrochemical results, the electrode characterizations and previous studies on their physiology I am able to extrapolate that it is the difference in the electrode morphology that significantly alters current production. For the carbon fiber, smaller constituent materials create a tighter mesh and spacing that is more amenable to biofilm colonization and increases current production. In the second experiment, the larger graphene-nanoplatelet constituents provided a morphology that better promoted biofilm-growth, after the initial colonization, which enabled significantly higher current production.
机译:在本文中,我将电极组部署到微生物燃料电池(MFC)中,表征其性能,并评估铂催化剂和碳基电极对当前生产的影响。铂金工作的重点是通过使用纳米制造技术优化催化剂的使用来提高当前产量。碳电极工作旨在确定裸电极对生物膜阳极电流产生的影响。过去十年来,MFCs电极的发展蓬勃发展,然而,旨在鉴定催化剂沉积方法和电极性能如何影响电流的实验生产受到限制。此处进行的研究是尝试扩展铂催化剂和碳电极的知识库。在最初的章节(第4章和第5章)中,我讨论了通过使用铂纳米颗粒来减少催化剂载量同时增加电流产量的尝试。结果表明,相对于表面沉积而言,在阳极和阴极各处引入铂纳米颗粒是增加MFC电流产生的有效方法,因为它增加了催化剂的表面积。;后面的章节(第6和7章)进一步了解了电极的重要性通过电化学评估在不同碳电极结构上经过深入研究的阳极呼吸纯培养物的特性(即表面积,活化电阻,电导率,表面形态)。通过使用管状和片状的构成材料(即碳纤维和石墨烯纳米片)可以产生两种不同的结构,并且通过改变构成材料的尺寸来改变电极的形态。 oneidensis MR-1或地球细菌硫磺还原剂是无毒的,因为它们的生物电化学生理学是文献中记载最多的。使用电化学结果,电极表征和有关其生理的先前研究,我可以推断出,正是电极形态上的差异极大地改变了电流产生。对于碳纤维,较小的组成材料可产生更紧密的网格和间距,更易于生物膜定植并增加当前产量。在第二个实验中,较大的石墨烯-纳米血小板成分在最初定殖后提供了一种能更好地促进生物膜生长的形态,从而能够显着提高当前的产量。

著录项

  • 作者

    Sanchez, David V. P.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Nanotechnology.;Alternative Energy.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号